-
Notifications
You must be signed in to change notification settings - Fork 53
/
ICA_AROMA_functions.py
587 lines (477 loc) · 26.9 KB
/
ICA_AROMA_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
#!/usr/bin/env python
# Functions for ICA-AROMA v0.3 beta
from __future__ import division
from __future__ import print_function
from future import standard_library
standard_library.install_aliases()
from builtins import str
from builtins import range
from past.utils import old_div
import numpy as np
def runICA(fslDir, inFile, outDir, melDirIn, mask, dim, TR):
""" This function runs MELODIC and merges the mixture modeled thresholded ICs into a single 4D nifti file
Parameters
---------------------------------------------------------------------------------
fslDir: Full path of the bin-directory of FSL
inFile: Full path to the fMRI data file (nii.gz) on which MELODIC should be run
outDir: Full path of the output directory
melDirIn: Full path of the MELODIC directory in case it has been run before, otherwise define empty string
mask: Full path of the mask to be applied during MELODIC
dim: Dimensionality of ICA
TR: TR (in seconds) of the fMRI data
Output (within the requested output directory)
---------------------------------------------------------------------------------
melodic.ica MELODIC directory
melodic_IC_thr.nii.gz merged file containing the mixture modeling thresholded Z-statistical maps located in melodic.ica/stats/ """
# Import needed modules
import os
import subprocess
# Define the 'new' MELODIC directory and predefine some associated files
melDir = os.path.join(outDir, 'melodic.ica')
melIC = os.path.join(melDir, 'melodic_IC.nii.gz')
melICmix = os.path.join(melDir, 'melodic_mix')
melICthr = os.path.join(outDir, 'melodic_IC_thr.nii.gz')
# When a MELODIC directory is specified,
# check whether all needed files are present.
# Otherwise... run MELODIC again
if len(melDir) != 0 and os.path.isfile(os.path.join(melDirIn, 'melodic_IC.nii.gz')) and os.path.isfile(os.path.join(melDirIn, 'melodic_FTmix')) and os.path.isfile(os.path.join(melDirIn, 'melodic_mix')):
print(' - The existing/specified MELODIC directory will be used.')
# If a 'stats' directory is present (contains thresholded spatial maps)
# create a symbolic link to the MELODIC directory.
# Otherwise create specific links and
# run mixture modeling to obtain thresholded maps.
if os.path.isdir(os.path.join(melDirIn, 'stats')):
os.symlink(melDirIn, melDir)
else:
print(' - The MELODIC directory does not contain the required \'stats\' folder. Mixture modeling on the Z-statistical maps will be run.')
# Create symbolic links to the items in the specified melodic directory
os.makedirs(melDir)
for item in os.listdir(melDirIn):
os.symlink(os.path.join(melDirIn, item),
os.path.join(melDir, item))
# Run mixture modeling
os.system(' '.join([os.path.join(fslDir, 'melodic'),
'--in=' + melIC,
'--ICs=' + melIC,
'--mix=' + melICmix,
'--outdir=' + melDir,
'--Ostats --mmthresh=0.5']))
else:
# If a melodic directory was specified, display that it did not contain all files needed for ICA-AROMA (or that the directory does not exist at all)
if len(melDirIn) != 0:
if not os.path.isdir(melDirIn):
print(' - The specified MELODIC directory does not exist. MELODIC will be run seperately.')
else:
print(' - The specified MELODIC directory does not contain the required files to run ICA-AROMA. MELODIC will be run seperately.')
# Run MELODIC
os.system(' '.join([os.path.join(fslDir, 'melodic'),
'--in=' + inFile,
'--outdir=' + melDir,
'--mask=' + mask,
'--dim=' + str(dim),
'--Ostats --nobet --mmthresh=0.5 --report',
'--tr=' + str(TR)]))
# Get number of components
cmd = ' '.join([os.path.join(fslDir, 'fslinfo'),
melIC,
'| grep dim4 | head -n1 | awk \'{print $2}\''])
nrICs = int(float(subprocess.getoutput(cmd)))
# Merge mixture modeled thresholded spatial maps. Note! In case that mixture modeling did not converge, the file will contain two spatial maps. The latter being the results from a simple null hypothesis test. In that case, this map will have to be used (first one will be empty).
for i in range(1, nrICs + 1):
# Define thresholded zstat-map file
zTemp = os.path.join(melDir, 'stats', 'thresh_zstat' + str(i) + '.nii.gz')
cmd = ' '.join([os.path.join(fslDir, 'fslinfo'),
zTemp,
'| grep dim4 | head -n1 | awk \'{print $2}\''])
lenIC = int(float(subprocess.getoutput(cmd)))
# Define zeropad for this IC-number and new zstat file
cmd = ' '.join([os.path.join(fslDir, 'zeropad'),
str(i),
'4'])
ICnum = subprocess.getoutput(cmd)
zstat = os.path.join(outDir, 'thr_zstat' + ICnum)
# Extract last spatial map within the thresh_zstat file
os.system(' '.join([os.path.join(fslDir, 'fslroi'),
zTemp, # input
zstat, # output
str(lenIC - 1), # first frame
'1'])) # number of frames
# Merge and subsequently remove all mixture modeled Z-maps within the output directory
os.system(' '.join([os.path.join(fslDir, 'fslmerge'),
'-t', # concatenate in time
melICthr, # output
os.path.join(outDir, 'thr_zstat????.nii.gz')])) # inputs
os.system('rm ' + os.path.join(outDir, 'thr_zstat????.nii.gz'))
# Apply the mask to the merged file (in case a melodic-directory was predefined and run with a different mask)
os.system(' '.join([os.path.join(fslDir, 'fslmaths'),
melICthr,
'-mas ' + mask,
melICthr]))
def register2MNI(fslDir, inFile, outFile, affmat, warp):
""" This function registers an image (or time-series of images) to MNI152 T1 2mm. If no affmat is defined, it only warps (i.e. it assumes that the data has been registerd to the structural scan associated with the warp-file already). If no warp is defined either, it only resamples the data to 2mm isotropic if needed (i.e. it assumes that the data has been registered to a MNI152 template). In case only an affmat file is defined, it assumes that the data has to be linearly registered to MNI152 (i.e. the user has a reason not to use non-linear registration on the data).
Parameters
---------------------------------------------------------------------------------
fslDir: Full path of the bin-directory of FSL
inFile: Full path to the data file (nii.gz) which has to be registerd to MNI152 T1 2mm
outFile: Full path of the output file
affmat: Full path of the mat file describing the linear registration (if data is still in native space)
warp: Full path of the warp file describing the non-linear registration (if data has not been registered to MNI152 space yet)
Output (within the requested output directory)
---------------------------------------------------------------------------------
melodic_IC_mm_MNI2mm.nii.gz merged file containing the mixture modeling thresholded Z-statistical maps registered to MNI152 2mm """
# Import needed modules
import os
import subprocess
# Define the MNI152 T1 2mm template
fslnobin = fslDir.rsplit('/', 2)[0]
ref = os.path.join(fslnobin, 'data', 'standard', 'MNI152_T1_2mm_brain.nii.gz')
# If the no affmat- or warp-file has been specified, assume that the data is already in MNI152 space. In that case only check if resampling to 2mm is needed
if (len(affmat) == 0) and (len(warp) == 0):
# Get 3D voxel size
pixdim1 = float(subprocess.getoutput('%sfslinfo %s | grep pixdim1 | awk \'{print $2}\'' % (fslDir, inFile)))
pixdim2 = float(subprocess.getoutput('%sfslinfo %s | grep pixdim2 | awk \'{print $2}\'' % (fslDir, inFile)))
pixdim3 = float(subprocess.getoutput('%sfslinfo %s | grep pixdim3 | awk \'{print $2}\'' % (fslDir, inFile)))
# If voxel size is not 2mm isotropic, resample the data, otherwise copy the file
if (pixdim1 != 2) or (pixdim2 != 2) or (pixdim3 != 2):
os.system(' '.join([os.path.join(fslDir, 'flirt'),
' -ref ' + ref,
' -in ' + inFile,
' -out ' + outFile,
' -applyisoxfm 2 -interp trilinear']))
else:
os.system('cp ' + inFile + ' ' + outFile)
# If only a warp-file has been specified, assume that the data has already been registered to the structural scan. In that case apply the warping without a affmat
elif (len(affmat) == 0) and (len(warp) != 0):
# Apply warp
os.system(' '.join([os.path.join(fslDir, 'applywarp'),
'--ref=' + ref,
'--in=' + inFile,
'--out=' + outFile,
'--warp=' + warp,
'--interp=trilinear']))
# If only a affmat-file has been specified perform affine registration to MNI
elif (len(affmat) != 0) and (len(warp) == 0):
os.system(' '.join([os.path.join(fslDir, 'flirt'),
'-ref ' + ref,
'-in ' + inFile,
'-out ' + outFile,
'-applyxfm -init ' + affmat,
'-interp trilinear']))
# If both a affmat- and warp-file have been defined, apply the warping accordingly
else:
os.system(' '.join([os.path.join(fslDir, 'applywarp'),
'--ref=' + ref,
'--in=' + inFile,
'--out=' + outFile,
'--warp=' + warp,
'--premat=' + affmat,
'--interp=trilinear']))
def cross_correlation(a, b):
"""Cross Correlations between columns of two matrices"""
assert a.ndim == b.ndim == 2
_, ncols_a = a.shape
# nb variables in columns rather than rows hence transpose
# extract just the cross terms between cols in a and cols in b
return np.corrcoef(a.T, b.T)[:ncols_a, ncols_a:]
def feature_time_series(melmix, mc):
""" This function extracts the maximum RP correlation feature scores.
It determines the maximum robust correlation of each component time-series
with a model of 72 realignment parameters.
Parameters
---------------------------------------------------------------------------------
melmix: Full path of the melodic_mix text file
mc: Full path of the text file containing the realignment parameters
Returns
---------------------------------------------------------------------------------
maxRPcorr: Array of the maximum RP correlation feature scores for the components
of the melodic_mix file"""
# Import required modules
import numpy as np
import random
# Read melodic mix file (IC time-series), subsequently define a set of squared time-series
mix = np.loadtxt(melmix)
# Read motion parameter file
rp6 = np.loadtxt(mc)
_, nparams = rp6.shape
# Determine the derivatives of the RPs (add zeros at time-point zero)
rp6_der = np.vstack((np.zeros(nparams),
np.diff(rp6, axis=0)
))
# Create an RP-model including the RPs and its derivatives
rp12 = np.hstack((rp6, rp6_der))
# Add the squared RP-terms to the model
# add the fw and bw shifted versions
rp12_1fw = np.vstack((
np.zeros(2 * nparams),
rp12[:-1]
))
rp12_1bw = np.vstack((
rp12[1:],
np.zeros(2 * nparams)
))
rp_model = np.hstack((rp12, rp12_1fw, rp12_1bw))
# Determine the maximum correlation between RPs and IC time-series
nsplits = 1000
nmixrows, nmixcols = mix.shape
nrows_to_choose = int(round(0.9 * nmixrows))
# Max correlations for multiple splits of the dataset (for a robust estimate)
max_correls = np.empty((nsplits, nmixcols))
for i in range(nsplits):
# Select a random subset of 90% of the dataset rows (*without* replacement)
chosen_rows = random.sample(population=range(nmixrows),
k=nrows_to_choose)
# Combined correlations between RP and IC time-series, squared and non squared
correl_nonsquared = cross_correlation(mix[chosen_rows],
rp_model[chosen_rows])
correl_squared = cross_correlation(mix[chosen_rows]**2,
rp_model[chosen_rows]**2)
correl_both = np.hstack((correl_squared, correl_nonsquared))
# Maximum absolute temporal correlation for every IC
max_correls[i] = np.abs(correl_both).max(axis=1)
# Feature score is the mean of the maximum correlation over all the random splits
# Avoid propagating occasional nans that arise in artificial test cases
return np.nanmean(max_correls, axis=0)
def feature_frequency(melFTmix, TR):
""" This function extracts the high-frequency content feature scores.
It determines the frequency, as fraction of the Nyquist frequency,
at which the higher and lower frequencies explain half
of the total power between 0.01Hz and Nyquist.
Parameters
---------------------------------------------------------------------------------
melFTmix: Full path of the melodic_FTmix text file
TR: TR (in seconds) of the fMRI data (float)
Returns
---------------------------------------------------------------------------------
HFC: Array of the HFC ('High-frequency content') feature scores
for the components of the melodic_FTmix file"""
# Import required modules
import numpy as np
# Determine sample frequency
Fs = old_div(1, TR)
# Determine Nyquist-frequency
Ny = old_div(Fs, 2)
# Load melodic_FTmix file
FT = np.loadtxt(melFTmix)
# Determine which frequencies are associated with every row in the melodic_FTmix file (assuming the rows range from 0Hz to Nyquist)
f = Ny * (np.array(list(range(1, FT.shape[0] + 1)))) / (FT.shape[0])
# Only include frequencies higher than 0.01Hz
fincl = np.squeeze(np.array(np.where(f > 0.01)))
FT = FT[fincl, :]
f = f[fincl]
# Set frequency range to [0-1]
f_norm = old_div((f - 0.01), (Ny - 0.01))
# For every IC; get the cumulative sum as a fraction of the total sum
fcumsum_fract = old_div(np.cumsum(FT, axis=0), np.sum(FT, axis=0))
# Determine the index of the frequency with the fractional cumulative sum closest to 0.5
idx_cutoff = np.argmin(np.abs(fcumsum_fract - 0.5), axis=0)
# Now get the fractions associated with those indices index, these are the final feature scores
HFC = f_norm[idx_cutoff]
# Return feature score
return HFC
def feature_spatial(fslDir, tempDir, aromaDir, melIC):
""" This function extracts the spatial feature scores. For each IC it determines the fraction of the mixture modeled thresholded Z-maps respecitvely located within the CSF or at the brain edges, using predefined standardized masks.
Parameters
---------------------------------------------------------------------------------
fslDir: Full path of the bin-directory of FSL
tempDir: Full path of a directory where temporary files can be stored (called 'temp_IC.nii.gz')
aromaDir: Full path of the ICA-AROMA directory, containing the mask-files (mask_edge.nii.gz, mask_csf.nii.gz & mask_out.nii.gz)
melIC: Full path of the nii.gz file containing mixture-modeled threholded (p>0.5) Z-maps, registered to the MNI152 2mm template
Returns
---------------------------------------------------------------------------------
edgeFract: Array of the edge fraction feature scores for the components of the melIC file
csfFract: Array of the CSF fraction feature scores for the components of the melIC file"""
# Import required modules
import numpy as np
import os
import subprocess
# Get the number of ICs
numICs = int(subprocess.getoutput('%sfslinfo %s | grep dim4 | head -n1 | awk \'{print $2}\'' % (fslDir, melIC) ))
# Loop over ICs
edgeFract = np.zeros(numICs)
csfFract = np.zeros(numICs)
for i in range(0, numICs):
# Define temporary IC-file
tempIC = os.path.join(tempDir, 'temp_IC.nii.gz')
# Extract IC from the merged melodic_IC_thr2MNI2mm file
os.system(' '.join([os.path.join(fslDir, 'fslroi'),
melIC,
tempIC,
str(i),
'1']))
# Change to absolute Z-values
os.system(' '.join([os.path.join(fslDir, 'fslmaths'),
tempIC,
'-abs',
tempIC]))
# Get sum of Z-values within the total Z-map (calculate via the mean and number of non-zero voxels)
totVox = int(subprocess.getoutput(' '.join([os.path.join(fslDir, 'fslstats'),
tempIC,
'-V | awk \'{print $1}\''])))
if not (totVox == 0):
totMean = float(subprocess.getoutput(' '.join([os.path.join(fslDir, 'fslstats'),
tempIC,
'-M'])))
else:
print(' - The spatial map of component ' + str(i + 1) + ' is empty. Please check!')
totMean = 0
totSum = totMean * totVox
# Get sum of Z-values of the voxels located within the CSF (calculate via the mean and number of non-zero voxels)
csfVox = int(subprocess.getoutput(' '.join([os.path.join(fslDir, 'fslstats'),
tempIC,
'-k mask_csf.nii.gz',
'-V | awk \'{print $1}\''])))
if not (csfVox == 0):
csfMean = float(subprocess.getoutput(' '.join([os.path.join(fslDir, 'fslstats'),
tempIC,
'-k mask_csf.nii.gz',
'-M'])))
else:
csfMean = 0
csfSum = csfMean * csfVox
# Get sum of Z-values of the voxels located within the Edge (calculate via the mean and number of non-zero voxels)
edgeVox = int(subprocess.getoutput(' '.join([os.path.join(fslDir, 'fslstats'),
tempIC,
'-k mask_edge.nii.gz',
'-V | awk \'{print $1}\''])))
if not (edgeVox == 0):
edgeMean = float(subprocess.getoutput(' '.join([os.path.join(fslDir, 'fslstats'),
tempIC,
'-k mask_edge.nii.gz',
'-M'])))
else:
edgeMean = 0
edgeSum = edgeMean * edgeVox
# Get sum of Z-values of the voxels located outside the brain (calculate via the mean and number of non-zero voxels)
outVox = int(subprocess.getoutput(' '.join([os.path.join(fslDir, 'fslstats'),
tempIC,
'-k mask_out.nii.gz',
'-V | awk \'{print $1}\''])))
if not (outVox == 0):
outMean = float(subprocess.getoutput(' '.join([os.path.join(fslDir, 'fslstats'),
tempIC,
'-k mask_out.nii.gz',
'-M'])))
else:
outMean = 0
outSum = outMean * outVox
# Determine edge and CSF fraction
if not (totSum == 0):
edgeFract[i] = old_div((outSum + edgeSum), (totSum - csfSum))
csfFract[i] = old_div(csfSum, totSum)
else:
edgeFract[i] = 0
csfFract[i] = 0
# Remove the temporary IC-file
os.remove(tempIC)
# Return feature scores
return edgeFract, csfFract
def classification(outDir, maxRPcorr, edgeFract, HFC, csfFract):
""" This function classifies a set of components into motion and
non-motion components based on four features;
maximum RP correlation, high-frequency content, edge-fraction and CSF-fraction
Parameters
---------------------------------------------------------------------------------
outDir: Full path of the output directory
maxRPcorr: Array of the 'maximum RP correlation' feature scores of the components
edgeFract: Array of the 'edge fraction' feature scores of the components
HFC: Array of the 'high-frequency content' feature scores of the components
csfFract: Array of the 'CSF fraction' feature scores of the components
Return
---------------------------------------------------------------------------------
motionICs Array containing the indices of the components identified as motion components
Output (within the requested output directory)
---------------------------------------------------------------------------------
classified_motion_ICs.txt A text file containing the indices of the components identified as motion components """
# Import required modules
import numpy as np
import os
# Classify the ICs as motion or non-motion
# Define criteria needed for classification (thresholds and hyperplane-parameters)
thr_csf = 0.10
thr_HFC = 0.35
hyp = np.array([-19.9751070082159, 9.95127547670627, 24.8333160239175])
# Project edge & maxRPcorr feature scores to new 1D space
x = np.array([maxRPcorr, edgeFract])
proj = hyp[0] + np.dot(x.T, hyp[1:])
# Classify the ICs
motionICs = np.squeeze(np.array(np.where((proj > 0) + (csfFract > thr_csf) + (HFC > thr_HFC))))
# Put the feature scores in a text file
np.savetxt(os.path.join(outDir, 'feature_scores.txt'),
np.vstack((maxRPcorr, edgeFract, HFC, csfFract)).T)
# Put the indices of motion-classified ICs in a text file
txt = open(os.path.join(outDir, 'classified_motion_ICs.txt'), 'w')
if motionICs.size > 1: # and len(motionICs) != 0: if motionICs is not None and
txt.write(','.join(['{:.0f}'.format(num) for num in (motionICs + 1)]))
elif motionICs.size == 1:
txt.write('{:.0f}'.format(motionICs + 1))
txt.close()
# Create a summary overview of the classification
txt = open(os.path.join(outDir, 'classification_overview.txt'), 'w')
txt.write('\t'.join(['IC',
'Motion/noise',
'maximum RP correlation',
'Edge-fraction',
'High-frequency content',
'CSF-fraction']))
txt.write('\n')
for i in range(0, len(csfFract)):
if (proj[i] > 0) or (csfFract[i] > thr_csf) or (HFC[i] > thr_HFC):
classif = "True"
else:
classif = "False"
txt.write('\t'.join(['{:d}'.format(i + 1),
classif,
'{:.2f}'.format(maxRPcorr[i]),
'{:.2f}'.format(edgeFract[i]),
'{:.2f}'.format(HFC[i]),
'{:.2f}'.format(csfFract[i])]))
txt.write('\n')
txt.close()
return motionICs
def denoising(fslDir, inFile, outDir, melmix, denType, denIdx):
""" This function classifies the ICs based on the four features;
maximum RP correlation, high-frequency content, edge-fraction and CSF-fraction
Parameters
---------------------------------------------------------------------------------
fslDir: Full path of the bin-directory of FSL
inFile: Full path to the data file (nii.gz) which has to be denoised
outDir: Full path of the output directory
melmix: Full path of the melodic_mix text file
denType: Type of requested denoising ('aggr': aggressive, 'nonaggr': non-aggressive, 'both': both aggressive and non-aggressive
denIdx: Indices of the components that should be regressed out
Output (within the requested output directory)
---------------------------------------------------------------------------------
denoised_func_data_<denType>.nii.gz: A nii.gz file of the denoised fMRI data"""
# Import required modules
import os
import numpy as np
# Check if denoising is needed (i.e. are there components classified as motion)
check = denIdx.size > 0
if check == 1:
# Put IC indices into a char array
if denIdx.size == 1:
denIdxStrJoin = "%d"%(denIdx + 1)
else:
denIdxStr = np.char.mod('%i', (denIdx + 1))
denIdxStrJoin = ','.join(denIdxStr)
# Non-aggressive denoising of the data using fsl_regfilt (partial regression), if requested
if (denType == 'nonaggr') or (denType == 'both'):
os.system(' '.join([os.path.join(fslDir, 'fsl_regfilt'),
'--in=' + inFile,
'--design=' + melmix,
'--filter="' + denIdxStrJoin + '"',
'--out=' + os.path.join(outDir, 'denoised_func_data_nonaggr.nii.gz')]))
# Aggressive denoising of the data using fsl_regfilt (full regression)
if (denType == 'aggr') or (denType == 'both'):
os.system(' '.join([os.path.join(fslDir, 'fsl_regfilt'),
'--in=' + inFile,
'--design=' + melmix,
'--filter="' + denIdxStrJoin + '"',
'--out=' + os.path.join(outDir, 'denoised_func_data_aggr.nii.gz'),
'-a']))
else:
print(" - None of the components were classified as motion, so no denoising is applied (a symbolic link to the input file will be created).")
if (denType == 'nonaggr') or (denType == 'both'):
os.symlink(inFile, os.path.join(outDir, 'denoised_func_data_nonaggr.nii.gz'))
if (denType == 'aggr') or (denType == 'both'):
os.symlink(inFile, os.path.join(outDir, 'denoised_func_data_aggr.nii.gz'))