-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathterms.tex
591 lines (437 loc) · 20.2 KB
/
terms.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
\boldentry{Terms}
\entry{
Classes of Systems
}{
Given a dynamic system
\begin{itemize}
\setlength\itemsep{2em}
\item \textbf{Dynamic system}
\[\dot{x} = f(x, u, t)\]
\item \textbf{Time-invariant system} is a dynamic system
\[\dot{x} = f(x, u)\]
\item \textbf{Autonomous system} is a dynamic system
\[\dot{x} = f(x, t)\]
\item \textbf{Linear system}
(\href{https://en.wikipedia.org/wiki/Linear_system}{W})
is a dynamic system
\[\dot{x} = f(x, u, t) = A(t) x + B(t) u\]
\item \textbf{Linear time-invariant system} is a linear system and a time-invariant system
\[\dot{x} = f(x, u) = A x + B u\]
\end{itemize}
}
\entry{
Lipschitz Continuity
(\href{https://en.wikipedia.org/wiki/Lipschitz_continuity}{W},)
(\href{https://math.berkeley.edu/~mgu/MA128ASpring2017/MA128ALectureWeek9.pdf}{UC Berkley})
}{
Lipschitz continuous functions are continuous and differentiable almost anywhere in a domain. \\\\
Given a domain $D$ and a function $f: D \rightarrow \mathbb{R}, D \in \mathbb{R}^n$, \\
$f$ is Lipschitz continuous if $\exists L>0$ such that $|f(x) - f(y)| < L ||(x-y)|| \forall x,y \in D$
}
\entry{
Hessian
(\href{https://en.wikipedia.org/wiki/Hessian_matrix}{W}),
(\href{https://www.khanacademy.org/math/multivariable-calculus/applications-of-multivariable-derivatives/quadratic-approximations/a/the-hessian}{Kahn Academy}),
(\href{https://mathworld.wolfram.com/Hessian.html}{Wolfram})
}{
\begin{itemize}
\item A $n$ x $n$ matrix of all 2nd order partial derivatives of some function $f : \mathbb{R}^n \rightarrow \mathbb{R}$
\begin{equation}
H f(\Vec{x}) = f"(\Vec{x}) =
\left(
\begin{matrix}
\frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_1 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \frac{\partial^2 f}{\partial x_2 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\frac{\partial^2 f}{\partial x_3 \partial x_1} & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \frac{\partial^2 f}{\partial x_n \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_n \partial x_n} \\
\end{matrix}
\right)
\end{equation}
\item The determinant of a Hessian matrix
\end{itemize}
}
\entry{
definite (function)
(\href{https://en.wikipedia.org/wiki/Positive-definite_function}{W})
}{
\emph{Warning: this definition does not appear to be common outside of controls}\\
Given a real-valued, continuously differentiable function $V(x) : \mathbb{R} \rightarrow \mathbb{R}$ \\
$V(x)$ can be classified as
\begin{itemize}
\setlength\itemsep{2em}
\item
\textbf{(globally) positive semidefinite} if
\[
V(x) \geq 0 \qquad \forall x \in \mathbb{R}
\]
\begin{center}
\textit{($v$ is greater than or equal to 0 regardless of $x$)}
\end{center}
\begin{center}
\textbf{in other words}
\end{center}
\[
\exists \alpha_1(\cdot), \alpha_2(\cdot) \in \text{class K such that } \alpha_1(\norm{x}) \leq V(x) \leq \alpha_2(\norm{x})
\]
\begin{center}
\textit{(we can find two class K functions $\alpha_1$ and $\alpha_2$ that bound $V(x)$)}
\end{center}
\item
\textbf{(globally) positive definite} if positive semidefinite AND
\[
V(x) = 0 \iff x = 0
\]
\begin{center}
\textit{($V(x)$ is zero if and only if $x$ is zero)}
\end{center}
\item
\textbf{(globally) negative semidefinite} if
\[
V(x) \leq 0 \qquad \forall x \in \mathbb{R}
\]
\begin{center}
\textit{($v$ is less than or equal to 0 regardless of $x$)}
\end{center}
\item
\textbf{(globally) negative definite} if negative semidefinite AND
\[
V(x) = 0 \iff x = 0
\]
\begin{center}
\textit{($V(x)$ is zero if and only if $x$ is zero)}
\end{center}
\item
\textbf{locally positive definite (l.p.d)} if
\[
V(x) \geq 0 \qquad \forall x \in N
\]
where $N$ is a small open neighborhood containing $\Vec{0}$
\begin{center}
\textit{($v$ is greater than or equal to 0 regardless of $x$ in some small open neighborhood $N$ that contains the zero vector)}
\end{center}
\begin{center}
\textbf{AND}
\end{center}
\[
V(x) = 0 \iff x = 0
\]
\begin{center}
\textit{($V(x)$ is zero if and only if $x$ is zero)}
\end{center}
Note that the criteria for a function to be locally positive definite are similar, but more relaxed than, those for globally positive definite functions.
\item
\textbf{positive definite on some domain $D \in \mathbb{R}^n$} if \\
we only care if the conditions for positive definite functions hold for all $x$ in $D$.
\end{itemize}
} % end definite
\entry{
definite (matrix)
(\href{https://en.wikipedia.org/wiki/Positive-definite_function}{W})
}{
Given a real-valued square matrix $Q(x) \in \mathbb{R}^{n\times n}$ \\
$V(x)$ can be classified as
\begin{itemize}
\setlength\itemsep{2em}
\item
\textbf{positive semidefinite} if
\[
x^T Q x \geq 0 \qquad \forall x \in \mathbb{R}^n
\]
This is synonymous to saying
\[
Q \geq 0 \qquad \text{and} \qquad Q \succeq 0
\]
\begin{center}
\textit{(Q is greater than equal to zero, and all its elements are greater than or equal to zero)}
\end{center}
\end{itemize}
} % end definite
\entry{
Autonomous Stability
(\href{http://underactuated.mit.edu/lyapunov.html}{MIT})
}{
Given a system \[\dot{x} = f(x)\] and some open connected region $\mathcal{D}$ containing $\Vec{0}$\\
Stability is usually used to describe trajectories around the origin of a system.\\
\begin{itemize}
\setlength\itemsep{2em}
\item \textbf{Stability}\\
The equilibrium point $x=0$ is stable if $\forall \epsilon>0$, $\exists \delta(\epsilon)>0$ such that $\norm{x(0)}<\delta \implies \norm{x(t)}<\epsilon$.
In other words, let $x_0(t)$ be the solution of $\dot{x} = f(x, t)$ starting at $x_0(t_0)$. The system is stable if, for any $\epsilon>0$, we can find some $\delta(\epsilon,t_0)$ such that
\[\norm{x(t_0)}-x_0(t_0)<\delta \implies \norm{x(t_0)}-x_0(t_0)<\delta\]
\begin{itemize}
\item \textbf{In the sense of Lyapunov}\\
If there exists a scalar, continuously-differentiable function $V(x)$ such that
\[V(x)>0 \quad \forall x \in \mathcal{D}\setminus\left\{\Vec{0}\right\},\qquad V(\Vec{0})=0\]
\begin{center}
\textit{($V(x)$ is a locally positive definite function)}
\end{center}
\begin{center}\textbf{AND}\end{center}
\[\dot{V}(x)=\frac{\partial V}{\partial x} f(x) \leq 0 \quad \forall x \in \mathcal{D}\setminus\left\{\Vec{0}\right\},\qquad V(\Vec{0})=0\]
\begin{center}
\textit{($\dot{V}(x)$ is a locally negative semidefinite function)}
\end{center}
then the origin is stable in the sense of Lyapunov, and $V(x)$ is a Lyapunov function of $f(x)$.
\end{itemize}
\item \textbf{Instability}\\
The equilibrium point $x=0$ is unstable if it is not stable
\item \textbf{Asymptotic stability}\\
The equilibrium point $x=0$ is asymptotically stable if it is stable and $\exists \delta_1$ such that $\norm{x(0)}<\delta_1 \implies \lim\limits_{t\rightarrow\infty}x(t)=0$
\begin{itemize}
\item \textbf{In the sense of Lyapunov}\\
The origin is asymptotically stable in the sense of Lyapunov if stable AND
\[\dot{V}(x)=\frac{\partial V}{\partial x} f(x) < 0 \quad \forall x \in \mathcal{D}\setminus\left\{\Vec{0}\right\}\]
\begin{center}
\textit{($\dot{V}(x)$ is a locally negative definite function)}
\end{center}
\end{itemize}
\item \textbf{Exponential stability}\\
\begin{itemize}
\item \textbf{In the sense of Lyapunov}\\
The origin is exponentially stable in the sense of Lyapunov if stable AND
\[\dot{V}(x)=\frac{\partial V}{\partial x} f(x) \leq -\alpha V(x) \quad \forall x \in \mathcal{D}\setminus\left\{\Vec{0}\right\}\]
\end{itemize}
\item \textbf{Uniform stability}\\
A more strict form of stability. The equilibrium point $x=0$ is uniformly stable if it is stable and, for each $epsilon>0$, there exists a $\delta(\epsilon)>0$, independent of $t_0$.
\end{itemize}
}
\entry{
Nonautonomous Stability
(\href{http://underactuated.mit.edu/lyapunov.html}{MIT})
}{
See the entry on stability first.
Now that the time $t$ might affect the state of the system (in other words, now $\dot{x} = f(x, t)$), we need to make a few changes to definitions used to analyze stability for autonomous systems:
\begin{center}
\textit{($V(x)$ is larger than some class K function $\alpha_1$)}
\end{center}
\begin{itemize}
\item \textbf{Positive semidefinite}
\begin{itemize}
\item $V(x)$ is positive semidefinite if
\[\exists \alpha_1(\cdot), \alpha_2(\cdot) \in \text{class K such that } \alpha_1(\norm{x}) \leq V(x) \leq \alpha_2(\norm{x})\]
\item $V(x,t)$ is positive semidefinite if
\[\exists \alpha_1(\cdot) \in \text{class K such that } \alpha_1(\norm{x}) \leq V(x,t)\]
\begin{center} OR \end{center}
\[V(x,t) \geq W_1(x), \qquad W_1(x) \text{ is positive definite} \]
\end{itemize}
\item \textbf{Radial unboundedness}
\begin{itemize}
\item $V(x)$ is radially unbounded if
\[\exists \alpha_1(\cdot) \in \text{class $K_\infty$ such that } V(x) \geq \alpha_1(\norm{x})\]
\item $V(x,t)$ is radially unbounded if
\[\exists \alpha_1(\cdot) \in \text{class K such that } \alpha_1(\norm{x}) \leq V(x,t)\]
\begin{center} OR \end{center}
\[V(x,t) \geq W_1(x), \qquad W_1(x) \text{ is radially unbounded} \]
\end{itemize}
\item \textbf{Decrescent}
\begin{itemize}
\item $V(x)$ is decrescent if... ?
\item $V(x,t)$ is decrescent if
\[\exists \alpha_1(\cdot) \in \text{class K such that } \alpha_1(\norm{x}) \leq V(x,t)\]
\begin{center} OR \end{center}
\[V(x,t) \leq W_2(x), \qquad W_2(x) \text{ is positive definite}\]
\end{itemize}
\end{itemize}
Now with these new definitions, we can define stability like so:
\begin{itemize}
\setlength\itemsep{2em}
\item \textbf{Stable}\\
$V(x,t)$ is locally positive definite and $\dot{V}(x,t)$ is locally less than or equal to zero.
\item \textbf{Uniformly stable (U.S.)}\\
A more strict form of stability. The equilibrium point $x=0$ is uniformly stable if it is stable and, for each $epsilon>0$, there exists a $\delta(\epsilon)>0$, independent of $t_0$.
$V(x,t)$ is locally positive definite and decrescent and $\dot{V}(x,t)$ is locally less than or equal to zero.
\item \textbf{Uniformly asymptotically stable (U.A.S.)}\\
$V(x,t)$ is locally positive definite and decrescent and $\dot{V}(x,t)$ is locally negative definite.
\item \textbf{Globally uniformly asymptotically stable (G.U.A.S.)}\\
$V(x,t)$ is locally positive definite and decrescent and $\dot{V}(x,t)$ is negative definite.
\end{itemize}
}
\entry{
Stability
(continued)
}{
\begin{itemize}
\item \textbf{Global asymptotic stability}\\
\begin{itemize}
\item \textbf{In the sense of Lyapunov}\\
If the origin is globally asymptotically stable in the sense of Lyapunov if is asymptotically stable and
\[\norm{x}\rightarrow\infty \implies V(x)\rightarrow\infty\]
\begin{center}
\textit{($V(x)$ is radially unbounded)}
\end{center}
\end{itemize}
\item \textbf{L-stability}\\ (TODO)
\item \textbf{I/O L-stability}\\ (TODO)
\item \textbf{Finite-gain L-stability}\\ (TODO)
\item \textbf{Small-signal I/O L-stability}\\ (TODO)
\item \textbf{Small-signal finite-gain L-stability}\\ (TODO)
\end{itemize}
}
\entry{
Class $\kappa$ function
(Class k function)
}{
Class k functions are often employed to construct Lyapunov functions, which are used to prove stability properties of nonautonomous systems.
Given a continuous function $\alpha(r) : \left[0,a\right) \rightarrow \left[0,\infty\right)$
\emph{(a function $\alpha$ with one real input $r$ between zero inclusive and some positive real number $a$ exclusive, and returns a scalar from zero inclusive to infinity exclusive)}
$\alpha(r)$ is
\begin{itemize}
\item \textbf{class $\kappa$} if it is:
\begin{itemize}
\item zero at zero
\item strictly increasing
\item continuous
\end{itemize}
\item \textbf{class $\kappa_\infty$} if it is:
\begin{itemize}
\item zero at zero
\item strictly increasing
\item continuous
\item $\infty$ at $\infty$
\end{itemize}
\end{itemize}
Given a continuous function $\beta(r,s) : \left[0,a\right) \times \left[0,b\right) \rightarrow \left[0,\infty\right)$ \emph{(a function $\beta$ with two real inputs $r$ and $s$, each between zero inclusive and some positive real number exclusive, and returns a scalar from zero inclusive to infinity exclusive)}
$\beta(r,s)$ is
\begin{itemize}
\item \textbf{class $\kappa_\mathcal{L}$} if:
\begin{itemize}
\item for every fixed value for $s$, $\beta(r,s)$ is a class $\kappa$ function.
\item for every fixed value for $r$, $\beta(r,s)$ decreases as $s$ increases, and $\lim_{s \to \infty} \beta(r,s) = 0$.
\end{itemize}
\end{itemize}
}
\entry{
Radially Unbounded function
}{
A function $V(x)$ is \textbf{radially unbounded} if
\[\norm{x}\rightarrow\infty \implies \norm{V(x)}\rightarrow\infty\]
\begin{center}
\textbf{in other words}
\end{center}
\[
\exists \alpha_1(\cdot) \in \text{class K such that } V(x) \geq \alpha_1(\norm{x})
\]
\begin{center}
\textit{($V(x)$ is larger than some class K function $\alpha_1$)}
\end{center}
}
\entry{
$\sup$ (supremum)
}{
Like a maximum of a functions, but includes limits that aren't necessarily a part of the domain of the function.
(TODO)
}
\entry{
Hurwitz
}{
\begin{itemize}
\item \textbf{Hurwitz (polynomial)}: \\
A polynomial whose roots that are all in the left-half plane. (In other words, the real part of every root is strictly negative)
\item \textbf{Hurwitz (matrix)} (\href{https://en.wikipedia.org/wiki/Hurwitz_matrix}{W}): \\
A square matrix whose characteristic polynomial is Hurwitz, meaning all eigenvalues are in the left-half plane. (In other words, the real part of every eigenvalue is strictly negative)
\item \textbf{Routh-Hurwitz stability criterion} (\href{https://ieeexplore.ieee.org/document/165530}{IEEE}): \\
TODO
\end{itemize}
Any hyperbolic fixed point (or equilibrium point) of a continuous dynamical system is locally asymptotically stable if and only if the Jacobian of the dynamical system is Hurwitz stable at the fixed point.
A system is stable if its control matrix is a Hurwitz matrix.
The negative real components of the eigenvalues of the matrix represent negative feedback. Similarly, a system is inherently unstable if any of the eigenvalues have positive real components, representing positive feedback.
}
\entry{
Zero-state observable
}{
A time-invariant system of the form
\[ \begin{cases}
\dot{x} = f(x, u) \\
y = h(x, u)
\end{cases}
\]
is zero-state observable if
\[ \begin{cases}
y \equiv 0 \\
u \equiv 0
\end{cases} \implies x \equiv 0
\]
In other words, when $u=0$, any nonzero state behavior will be observed at the output ($y\neq0$)
}
\entry{
Sets
}{
\begin{itemize}
\item \textbf{Invariant Set} \\
A set of vectors $M$ is invariant with respect to $\dot{x} = f(x)$ if
\[
x(0) \in M \implies x(t) \in M, \qquad \forall t \in \mathbb{R}
\]
\begin{center}
\emph{(if a solution belongs to M at some time instant, then it belongs to M for
all future and past time)}
\end{center}
\item \textbf{Positively Invariant Set} \\
A set of vectors $M$ is positively invariant with respect to $\dot{x} = f(x)$ if
\[
x(0) \in M \implies x(t) \in M, \qquad \forall t \geq 0
\]
\begin{center}
\textit{}{(if a solution belongs to M at some time instant, then it belongs to M for
all future time)}
\end{center}
\item \textbf{Open Set}\\
A set $D\subset\mathbb{R}^n$ (\textit{$D$, which is a set of real vectors}) is an \textbf{open set} if
\[\forall x \subset D, \quad \exists \epsilon>0 \quad \text{ such that } \quad B\left(x, \epsilon\right) \subset D\]
\begin{center}
\textit{(for all vectors $x$ in the domain $D$, there exists a real scalar $\epsilon$ such that we can create a ball around $x$ with radius $\epsilon$, and that whole ball is in $D$)}
\end{center}
\item \textbf{Closed Set}\\
A set $D\subset\mathbb{R}^n$ (\textit{$D$, which is a set of real vectors}) is a \textbf{closed set} if
\[\mathbb{R}^n \setminus D \quad \text{is an open set}\]
\begin{center}
\textit{(everywhere outside of $D$ is open)}
\end{center}
\item \textbf{Bounded Set}\\
A set $D\subset\mathbb{R}^n$ (\textit{$D$, which is a set of real vectors}) is a \textbf{bounded set} if
\[\exists \epsilon>0 \quad \text{ such that } \quad D \subset B\left(0, \epsilon\right)\]
\begin{center}
\textit{($D$ fits in a ball with a finite, constant radius $\epsilon$)}
\end{center}
\item \textbf{Compact Set}\\
A set $D\subset\mathbb{R}^n$ (\textit{$D$, which is a set of real vectors}) is a \textbf{compact set} if it is closed and bounded.
\end{itemize}
}
\entry{
Passivity
}{
For a system $y=h(u,t), \quad h:\mathbb{R}^m \times \left[0,\infty\right) \rightarrow \mathbb{R}^n$ \\
\textit{(output state $y$ (an $n$-dimensional vector) is a function of the input state $u$ (an $m$-dimensional vector) and time t)}
\begin{itemize}
\item \textbf{Invariant Set} \\
A set of vectors $M$ is invariant with respect to $\dot{x} = f(x)$ if
\[
x(0) \in M \implies x(t) \in M, \qquad \forall t \in \mathbb{R}
\]
\begin{center}
\emph{(if a solution belongs to M at some time instant, then it belongs to M for
all future and past time)}
\end{center}
\end{itemize}
}
\entry{
Adjoint
}{
\begin{itemize}
\item The \textbf{\{adjoint or Hermitian transpose\} of a matrix $A$} (\href{https://mathworld.wolfram.com/AdjointRepresentation.html}{Wolfram}) is its conjugate transpose, denoted as $A'$, $A^*$, $A^H$, or $A^\dagger$ i.e.
\[
A^H=\overline{A}^T
\]
Interesting properties of ajoint matrices:
\begin{itemize}
\item $A^H=\overline{A}^T=\overline{A^T}$
\item If a matrix is its own conjugate transpose, that matrix is called \textbf{self-adjoint} or \textbf{Hermetian}
\item If $A$ is a real matrix, $A^H=A^T$
\end{itemize}
Warning: In some older literature, the "adjoint of a matrix" may mean the \textbf{adjunct matrix of a square matrix} (\href{https://en.wikipedia.org/wiki/Adjugate_matrix}{W})
\item The \textbf{adjoint representation of a vector space} (\href{https://mathworld.wolfram.com/AdjointRepresentation.html}{Wolfram}) \\
(TODO)
\item The \textbf{adjoint equation} (\href{https://en.wikipedia.org/wiki/Adjoint_equation}{W}) \\
(TODO)
\end{itemize}
}