-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadabelief.py
178 lines (153 loc) · 8.54 KB
/
adabelief.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import math
import torch
from torch.optim.optimizer import Optimizer
version_higher = ( torch.__version__ >= "1.5.0" )
class AdaBelief(Optimizer):
r"""Implements AdaBelief algorithm. Modified from Adam in PyTorch
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False)
weight_decouple (boolean, optional): ( default: False) If set as True, then
the optimizer uses decoupled weight decay as in AdamW
fixed_decay (boolean, optional): (default: False) This is used when weight_decouple
is set as True.
When fixed_decay == True, the weight decay is performed as
$W_{new} = W_{old} - W_{old} \times decay$.
When fixed_decay == False, the weight decay is performed as
$W_{new} = W_{old} - W_{old} \times decay \times lr$. Note that in this case, the
weight decay ratio decreases with learning rate (lr).
rectify (boolean, optional): (default: False) If set as True, then perform the rectified
update similar to RAdam
reference: AdaBelief Optimizer, adapting stepsizes by the belief in observed gradients
NeurIPS 2020 Spotlight
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False, weight_decouple = False, fixed_decay=False, rectify = False ):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, amsgrad=amsgrad)
super(AdaBelief, self).__init__(params, defaults)
self.weight_decouple = weight_decouple
self.rectify = rectify
self.fixed_decay = fixed_decay
if self.weight_decouple:
print('Weight decoupling enabled in AdaBelief')
if self.fixed_decay:
print('Weight decay fixed')
if self.rectify:
print('Rectification enabled in AdaBelief')
if amsgrad:
print('AMS enabled in AdaBelief')
def __setstate__(self, state):
super(AdaBelief, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
def reset(self):
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
amsgrad = group['amsgrad']
# State initialization
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data,
memory_format=torch.preserve_format) if version_higher else torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_var'] = torch.zeros_like(p.data,
memory_format=torch.preserve_format) if version_higher else torch.zeros_like(p.data)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_var'] = torch.zeros_like(p.data,
memory_format=torch.preserve_format) if version_higher else torch.zeros_like(p.data)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('AdaBelief does not support sparse gradients, please consider SparseAdam instead')
amsgrad = group['amsgrad']
state = self.state[p]
beta1, beta2 = group['betas']
# State initialization
if len(state) == 0:
state['rho_inf'] = 2.0 / (1.0 - beta2) - 1.0
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data,
memory_format=torch.preserve_format) if version_higher else torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_var'] = torch.zeros_like(p.data,
memory_format=torch.preserve_format) if version_higher else torch.zeros_like(p.data)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_var'] = torch.zeros_like(p.data,
memory_format=torch.preserve_format) if version_higher else torch.zeros_like(p.data)
# get current state variable
exp_avg, exp_avg_var = state['exp_avg'], state['exp_avg_var']
state['step'] += 1
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
# perform weight decay, check if decoupled weight decay
if self.weight_decouple:
if not self.fixed_decay:
p.data.mul_(1.0 - group['lr'] * group['weight_decay'])
else:
p.data.mul_(1.0 - group['weight_decay'])
else:
if group['weight_decay'] != 0:
grad.add_(group['weight_decay'], p.data)
# Update first and second moment running average
exp_avg.mul_(beta1).add_(1 - beta1, grad)
grad_residual = grad - exp_avg
exp_avg_var.mul_(beta2).addcmul_(1 - beta2, grad_residual, grad_residual)
if amsgrad:
max_exp_avg_var = state['max_exp_avg_var']
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_var, exp_avg_var, out=max_exp_avg_var)
# Use the max. for normalizing running avg. of gradient
denom = (max_exp_avg_var.add_(group['eps']).sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
else:
denom = (exp_avg_var.add_(group['eps']).sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
if not self.rectify:
# Default update
step_size = group['lr'] / bias_correction1
p.data.addcdiv_(-step_size, exp_avg, denom)
else:# Rectified update
# calculate rho_t
state['rho_t'] = state['rho_inf'] - 2 * state['step'] * beta2 ** state['step'] / (
1.0 - beta2 ** state['step'])
if state['rho_t'] > 4: # perform Adam style update if variance is small
rho_inf, rho_t = state['rho_inf'], state['rho_t']
rt = (rho_t - 4.0) * (rho_t - 2.0) * rho_inf / (rho_inf - 4.0) / (rho_inf - 2.0) / rho_t
rt = math.sqrt(rt)
step_size = rt * group['lr'] / bias_correction1
p.data.addcdiv_(-step_size, exp_avg, denom)
else: # perform SGD style update
p.data.add_( -group['lr'], exp_avg)
return loss