-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexport.py
81 lines (70 loc) · 2.39 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
import yaml
from paddle.static import InputSpec
from paddle3d.apis.config import Config
def parse_args():
parser = argparse.ArgumentParser(description='Model export.')
# params of training
parser.add_argument(
"--config",
dest="cfg",
help="The config file.",
default=None,
type=str,
required=True)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the exported model',
type=str,
default='./output')
parser.add_argument(
'--model_path',
dest='model_path',
help='The path of model for export',
type=str,
default=None)
parser.add_argument(
"--input_shape",
nargs='+',
help="Export the model with fixed input shape, such as 1 3 1024 1024.",
type=int,
default=None)
return parser.parse_args()
def main(args):
cfg = Config(path=args.cfg)
net = cfg.model
if args.model_path:
para_state_dict = paddle.load(args.model_path)
net.set_dict(para_state_dict)
net.eval()
input_spec = [{
"images": InputSpec(
shape=[None,3,None,None], name="images"),
"trans_lidar_to_cam": InputSpec(
shape=[None,4,4], name='trans_lidar_to_cam'),
"trans_cam_to_img": InputSpec(
shape=[None,3,4], name='trans_cam_to_img'),
}]
static_model = paddle.jit.to_static(
net, input_spec=input_spec)
save_path = os.path.join(args.save_dir, 'model')
paddle.jit.save(static_model, save_path, input_spec=[input_spec])
if __name__ == '__main__':
args = parse_args()
main(args)