Given an m x n
binary matrix mat
, return the number of special positions in mat
.
A position (i, j)
is called special if mat[i][j] == 1
and all other elements in row i
and column j
are 0
(rows and columns are 0-indexed).
Example 1:
Input: mat = [[1,0,0],[0,0,1],[1,0,0]] Output: 1 Explanation: (1, 2) is a special position because mat[1][2] == 1 and all other elements in row 1 and column 2 are 0.
Example 2:
Input: mat = [[1,0,0],[0,1,0],[0,0,1]] Output: 3 Explanation: (0, 0), (1, 1) and (2, 2) are special positions.
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n <= 100
mat[i][j]
is either0
or1
.
Similar Questions:
Hints:
- Keep track of 1s in each row and in each column. Then while iterating over matrix, if the current position is 1 and current row as well as current column contains exactly one occurrence of 1.
// OJ: https://leetcode.com/problems/special-positions-in-a-binary-matrix/
// Author: github.com/lzl124631x
// Time: O(MN * (M + N))
// Space: O(1)
class Solution {
public:
int numSpecial(vector<vector<int>>& A) {
int M = A.size(), N = A[0].size(), ans = 0;
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
if (A[i][j] != 1) continue;
int row = 0, col = 0;
for (int x = 0; x < N && row <= 1; ++x) row += A[i][x];
if (row > 1) continue;
for (int x = 0; x < M && col <= 1; ++x) col += A[x][j];
ans += col == 1;
}
}
return ans;
}
};
// OJ: https://leetcode.com/problems/special-positions-in-a-binary-matrix/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(M + N)
class Solution {
public:
int numSpecial(vector<vector<int>>& A) {
int M = A.size(), N = A[0].size(), ans = 0;
vector<int> row(M), col(N);
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
row[i] += A[i][j];
col[j] += A[i][j];
}
}
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
ans += A[i][j] == 1 && row[i] == 1 && col[j] == 1;
}
}
return ans;
}
};