forked from openai/large-scale-curiosity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_policy.py
64 lines (55 loc) · 2.79 KB
/
cnn_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import tensorflow as tf
from baselines.common.distributions import make_pdtype
from utils import getsess, small_convnet, activ, fc, flatten_two_dims, unflatten_first_dim
class CnnPolicy(object):
def __init__(self, ob_space, ac_space, hidsize,
ob_mean, ob_std, feat_dim, layernormalize, nl, scope="policy"):
if layernormalize:
print("Warning: policy is operating on top of layer-normed features. It might slow down the training.")
self.layernormalize = layernormalize
self.nl = nl
self.ob_mean = ob_mean
self.ob_std = ob_std
with tf.variable_scope(scope):
self.ob_space = ob_space
self.ac_space = ac_space
self.ac_pdtype = make_pdtype(ac_space)
self.ph_ob = tf.placeholder(dtype=tf.int32,
shape=(None, None) + ob_space.shape, name='ob')
self.ph_ac = self.ac_pdtype.sample_placeholder([None, None], name='ac')
self.pd = self.vpred = None
self.hidsize = hidsize
self.feat_dim = feat_dim
self.scope = scope
pdparamsize = self.ac_pdtype.param_shape()[0]
sh = tf.shape(self.ph_ob)
x = flatten_two_dims(self.ph_ob)
self.flat_features = self.get_features(x, reuse=False)
self.features = unflatten_first_dim(self.flat_features, sh)
with tf.variable_scope(scope, reuse=False):
x = fc(self.flat_features, units=hidsize, activation=activ)
x = fc(x, units=hidsize, activation=activ)
pdparam = fc(x, name='pd', units=pdparamsize, activation=None)
vpred = fc(x, name='value_function_output', units=1, activation=None)
pdparam = unflatten_first_dim(pdparam, sh)
self.vpred = unflatten_first_dim(vpred, sh)[:, :, 0]
self.pd = pd = self.ac_pdtype.pdfromflat(pdparam)
self.a_samp = pd.sample()
self.entropy = pd.entropy()
self.nlp_samp = pd.neglogp(self.a_samp)
def get_features(self, x, reuse):
x_has_timesteps = (x.get_shape().ndims == 5)
if x_has_timesteps:
sh = tf.shape(x)
x = flatten_two_dims(x)
with tf.variable_scope(self.scope + "_features", reuse=reuse):
x = (tf.to_float(x) - self.ob_mean) / self.ob_std
x = small_convnet(x, nl=self.nl, feat_dim=self.feat_dim, last_nl=None, layernormalize=self.layernormalize)
if x_has_timesteps:
x = unflatten_first_dim(x, sh)
return x
def get_ac_value_nlp(self, ob):
a, vpred, nlp = \
getsess().run([self.a_samp, self.vpred, self.nlp_samp],
feed_dict={self.ph_ob: ob[:, None]})
return a[:, 0], vpred[:, 0], nlp[:, 0]