-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtokenization.py
executable file
·92 lines (74 loc) · 3.42 KB
/
tokenization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
class Vocab(object):
def __init__(self, list_of_tokens, embedding_vec=None, unk_token=None,
bos_token=None, eos_token=None, pad_token=None, min_freq=1, lower=True):
self.list_of_tokens = list_of_tokens
self.embedding_vec = embedding_vec
self.unk_token = unk_token
self.bos_token = bos_token
self.eos_token = eos_token
self.pad_token = pad_token
self.min_freq = min_freq
self.lower = lower
self.stoi, self.itos, self.freqs = {}, {}, {}
# Initialize with special tokens
for sti, special_token in enumerate([self.unk_token, self.bos_token, self.eos_token, self.pad_token]):
if special_token:
self.stoi[special_token] = sti
self.itos[sti] = special_token
def build(self):
# If the token doesn't appear in the vocabulary at least once
for ti, token in enumerate(self.list_of_tokens):
# Lowercase the token
if self.lower:
token = token.lower()
# Count the frequencies of tokens in whole list of tokens
if token not in self.freqs.keys():
self.freqs[token] = 1
else:
self.freqs[token] += 1
# Sort by frequency in 'descending' order
self.freqs = dict(sorted(self.freqs.items(), key=lambda x: x[1], reverse=True))
# Minimum frequency required for a token
unique_tokens = []
for token, freq in self.freqs.items():
if freq >= self.min_freq:
unique_tokens.append(token)
# Build vocab mapping tokens to numerical index
for token in unique_tokens:
self.itos[self.__len__()] = token
self.stoi[token] = self.__len__()
def __len__(self):
return len(self.stoi)
class Tokenizer(object):
def __init__(self, tokenization_fn, vocab=None, max_seq_length=128):
self.tokenization_fn = tokenization_fn
self.vocab = vocab
self.max_seq_length = max_seq_length
def tokenize(self, text):
tokens = self.tokenization_fn(text)
if self.vocab:
# Lowercase the token
if self.vocab.lower:
tokens = [token.lower() for token in tokens]
# Add beginning of sentence token
if self.vocab.bos_token:
tokens = [self.vocab.bos_token] + tokens
# Add end of sentence token
if self.vocab.eos_token:
tokens = tokens + [self.vocab.eos_token]
# Add padding token
if self.vocab.pad_token and len(tokens) < self.max_seq_length:
tokens += [self.vocab.pad_token] * (self.max_seq_length-len(tokens))
# Truncate to the maximum sequence length
if len(tokens) > self.max_seq_length:
tokens = tokens[:self.max_seq_length]
return tokens
def transform(self, tokens):
if self.vocab:
return [self.vocab.stoi[token] if token in self.vocab.stoi else self.vocab.stoi[self.vocab.unk_token] for token in tokens]
def inverse_transform(self, indices):
if self.vocab:
return [self.vocab.itos[index] for index in indices]
def tokenize_and_transform(self, text):
if self.vocab:
return self.transform(self.tokenize(text))