-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_demand_opt.py
156 lines (117 loc) · 5.66 KB
/
run_demand_opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import os
import random
import time
from tqdm import tqdm
import numpy as np
import torch
from torch.nn import DataParallel
from torch.optim.lr_scheduler import OneCycleLR
from momentfm import MOMENTPipeline
from data_provider.data_factory import data_provider
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def get_model(args, device):
model = MOMENTPipeline.from_pretrained(
"AutonLab/MOMENT-1-large",
model_kwargs={
'task_name': 'forecasting',
'forecast_horizon': args.pred_len
},
)
model.init()
if torch.cuda.device_count() > 1:
print(f"Using {torch.cuda.device_count()} GPUs")
model = DataParallel(model)
return model.to(device)
def val_or_test(model, loader, criterion, mae_metric, device, args, target_index):
model.eval()
total_loss = []
total_mae_loss = []
total_forecast_loss = []
total_forecast_mae_loss = []
with torch.no_grad():
for batch in tqdm(loader, total=len(loader)):
batch_x, batch_y, _, _, nems_forecast_x, nems_forecast_y, input_mask = [b.to(device) for b in batch]
pred = model(batch_x, input_mask)
pred = pred[:, target_index, :]
true = batch_y[:, target_index, :]
loss = criterion(pred, true)
mae_loss = mae_metric(pred, true)
total_loss.append(loss.item())
total_mae_loss.append(mae_loss.item())
forecasts = nems_forecast_y
forecast_loss = criterion(forecasts, true)
forecast_mae_loss = mae_metric(forecasts, true)
total_forecast_loss.append(forecast_loss.item())
total_forecast_mae_loss.append(forecast_mae_loss.item())
return map(np.mean, [total_loss, total_mae_loss, total_forecast_loss, total_forecast_mae_loss])
def train_epoch(model, train_loader, criterion, optimizer, scheduler, scaler, device, args, target_index):
model.train()
total_loss = []
for batch in tqdm(train_loader, total=len(train_loader)):
batch_x, batch_y, _, _, _, _, input_mask = [b.to(device) for b in batch]
optimizer.zero_grad(set_to_none=True)
if args.use_amp:
with torch.cuda.amp.autocast():
output = model(batch_x, input_mask)
loss = criterion(output[:, target_index, :], batch_y[:, target_index, :])
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
scaler.step(optimizer)
scaler.update()
else:
output = model(batch_x, input_mask)
loss = criterion(output[:, target_index, :], batch_y[:, target_index, :])
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step()
total_loss.append(loss.item())
return np.mean(total_loss)
def main():
parser = argparse.ArgumentParser(description='MOMENT')
# Add all your arguments here
# ...
parser.add_argument('--max_grad_norm', type=float, default=5.0, help='max gradient norm for clipping')
args = parser.parse_args()
set_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Model, criterion, and metrics setup
model = get_model(args, device)
criterion = torch.nn.MSELoss().to(device)
mae_metric = torch.nn.L1Loss().to(device)
# Data loading
train_data, train_loader = data_provider(args, 'train')
vali_data, vali_loader = data_provider(args, 'val')
test_data, test_loader = data_provider(args, 'test')
# Optimizer and scheduler setup
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
scheduler = OneCycleLR(optimizer, max_lr=args.learning_rate, total_steps=len(train_loader) * args.train_epochs,
pct_start=args.pct_start)
scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
target_index = 0 # Assuming this is always 0
# Training loop
for epoch in range(args.train_epochs):
train_loss = train_epoch(model, train_loader, criterion, optimizer, scheduler, scaler, device, args,
target_index)
print(f"Epoch {epoch + 1}/{args.train_epochs}: Train loss: {train_loss:.3f}")
vali_loss, vali_mae_loss, vali_forecast_loss, vali_forecast_mae_loss = val_or_test(model, vali_loader,
criterion, mae_metric,
device, args, target_index)
test_loss, test_mae_loss, test_forecast_loss, test_forecast_mae_loss = val_or_test(model, test_loader,
criterion, mae_metric,
device, args, target_index)
print(f"Validation - Loss: {vali_loss:.7f}, MAE: {vali_mae_loss:.7f}")
print(f"Test - Loss: {test_loss:.7f}, MAE: {test_mae_loss:.7f}")
print(f"NEMS Forecast - Validation Loss: {vali_forecast_loss:.7f}, MAE: {vali_forecast_mae_loss:.7f}")
print(f"NEMS Forecast - Test Loss: {test_forecast_loss:.7f}, MAE: {test_forecast_mae_loss:.7f}")
# Save the final model
torch.save(model.state_dict(), os.path.join(args.checkpoints, f'{args.model_id}_final_model.pth'))
if __name__ == '__main__':
main()