-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_cs702.py
287 lines (233 loc) · 11.9 KB
/
run_cs702.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import argparse
import gc
from datetime import datetime, timedelta
import torch.nn.functional as F
import itertools
from momentfm import MOMENTPipeline
from torch.optim.lr_scheduler import OneCycleLR
from data_provider.data_factory import data_provider_cs702
from tqdm import tqdm
import random
import torch
import numpy as np
import os
import time
import pandas as pd
parser = argparse.ArgumentParser(description='MOMENT')
fix_seed = 2021
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
# basic config
parser.add_argument('--task_name', type=str, required=True, default='long_term_forecast',
help='task name, options:[long_term_forecast, short_term_forecast, imputation, classification, anomaly_detection]')
parser.add_argument('--is_training', type=int, required=False, default=0, help='status')
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
parser.add_argument('--model_comment', type=str, required=True, default='none', help='prefix when saving test results')
parser.add_argument('--model', type=str, required=False, default='MOMENT',
help='model name, options: [MOMENT, LSTM]')
parser.add_argument('--seed', type=int, default=2021, help='random seed')
# data loader
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./dataset', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]')
parser.add_argument('--target', type=str, default='actual', help='target feature in S or MS task')
parser.add_argument('--loader', type=str, default='modal', help='dataset type')
parser.add_argument('--freq', type=str, default='d',
help='freq for time features encoding')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4')
# model define
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=16, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=32, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in encoder')
parser.add_argument('--patch_len', type=int, default=16, help='patch length')
parser.add_argument('--stride', type=int, default=8, help='stride')
parser.add_argument('--prompt_domain', type=int, default=0, help='')
parser.add_argument('--llm_model', type=str, default='LLAMA', help='LLM model')
parser.add_argument('--llm_dim', type=int, default='4096', help='LLM model dimension')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--align_epochs', type=int, default=10, help='alignment epochs')
parser.add_argument('--batch_size', type=int, default=16, help='batch size of train input data')
parser.add_argument('--eval_batch_size', type=int, default=8, help='batch size of model evaluation')
parser.add_argument('--patience', type=int, default=10, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='MSE', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--pct_start', type=float, default=0.2, help='pct_start')
parser.add_argument('--llm_layers', type=int, default=6)
parser.add_argument('--percent', type=int, default=100)
parser.add_argument('--results_path', type=str, default='./results/data/')
parser.add_argument('--gpu_id', type=int, default=0)
parser.add_argument('--moment_size', type=str, default='large', choices=['small', 'base', 'large'])
parser.add_argument('--use_finetuned', type=bool, default=False)
args = parser.parse_args()
device = torch.device(f'cuda:{args.gpu_id}' if torch.cuda.is_available() else 'cpu')
criterion = torch.nn.MSELoss()
mae_metric = torch.nn.L1Loss()
target_index = 0 # this is the index of the actual target feature
setting = '{}_{}_{}_ft{}_sl{}_ll{}_pl{}_{}'.format(
args.task_name,
args.model_id,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.des)
path = os.path.join(args.checkpoints,
setting + '-' + args.model_comment)
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
if not os.path.exists(args.results_path):
os.makedirs(args.results_path)
def find_best_permutations_batched(correct_tensor, wrong_order_tensor):
assert correct_tensor.dim() == 3 and wrong_order_tensor.dim() == 3, "Input tensors must be 3D"
assert correct_tensor.shape == wrong_order_tensor.shape, f"Input tensors must have the same shape"
batch_size, num_vectors, vector_dim = correct_tensor.shape
permutations = list(itertools.permutations(range(num_vectors)))
best_permutations = []
for i in range(batch_size):
best_permutation = None
best_similarity = float('-inf')
for perm in permutations:
reordered_tensor = wrong_order_tensor[i, list(perm), :]
similarity = F.cosine_similarity(correct_tensor[i], reordered_tensor)
mean_similarity = similarity.mean().item()
if mean_similarity > best_similarity:
best_similarity = mean_similarity
best_permutation = perm
best_permutations.append(best_permutation)
best_permutations_tensor = torch.tensor(best_permutations, dtype=torch.long, device=correct_tensor.device)
assert best_permutations_tensor.shape == (batch_size, num_vectors)
return best_permutations_tensor
def run_test(loader, output_csv=False, stage=None):
model.eval()
all_outputs = []
with torch.no_grad():
for batch in tqdm(loader, total=len(loader)):
_batch_seq, _batch_cdd, _input_mask = [b.to(device) for b in batch]
bsz, seq_len, n_feats = _batch_seq.shape
_batch_seq = _batch_seq.permute(0, 2, 1).contiguous()
_batch_seq = F.pad(_batch_seq, (0, 512 - seq_len), "constant", 0)
if args.use_amp:
with torch.cuda.amp.autocast():
_pred = model(_batch_seq, _input_mask)
else:
_pred = model(_batch_seq, _input_mask)
_pred = _pred.permute(0, 2, 1).contiguous()
pred_next_point = _pred[:, -1:, :].squeeze()
_pred = _pred[:, :3, :]
wrong_order = _batch_cdd.detach()
best_perm_batched = find_best_permutations_batched(_pred, wrong_order)
output_res = torch.cat((best_perm_batched, pred_next_point), dim=1)
all_outputs.append(output_res.cpu())
if output_csv:
final_outputs = torch.cat(all_outputs, dim=0).numpy()
df = pd.DataFrame(final_outputs)
df[[0, 1, 2]] = df[[0, 1, 2]].astype(int)
df.to_csv(os.path.join(args.results_path, f'predictions_epoch{args.train_epochs}.txt'),
sep=' ', index=False, header=False)
print('Test complete.')
# Initialize model
model = MOMENTPipeline.from_pretrained(
f"AutonLab/MOMENT-1-{args.moment_size}",
model_kwargs={
'task_name': 'forecasting',
'forecast_horizon': args.pred_len
},
)
model.init()
model.to(device)
# Data loaders
train_data, train_loader = data_provider_cs702(args, 'full')
test_data, test_loader = data_provider_cs702(args, 'test')
# Optimizer and scheduler setup
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
max_lr = args.learning_rate
total_steps = len(train_loader)
scheduler = OneCycleLR(optimizer, max_lr=max_lr, total_steps=total_steps, pct_start=args.pct_start)
# Zero-shot eval only
if args.task_name == 'zero-shot':
print(f'[DEBUG]: Forecasting for horizon length {args.pred_len}...')
run_test(test_loader, True, 'zero-shot')
print('Zero shot forecasting, ending inference...')
exit()
# Load fine-tuned model if specified
if args.use_finetuned:
model.load_state_dict(torch.load(os.path.join(path, 'checkpoint')))
torch.cuda.empty_cache()
gc.collect()
print(f'[DEBUG]: Fine-tuned eval for horizon length {args.pred_len}...')
run_test(test_loader, True, 'lp')
exit()
# Training
print(f'[DEBUG]: Training for horizon length {args.pred_len}...')
losses = []
start = time.time()
max_norm = 5.0 # For gradient clipping
for epoch in range(args.train_epochs):
model.train()
epoch_losses = []
for batch in tqdm(train_loader, total=len(train_loader)):
batch_seq, batch_cdd, batch_next_point, batch_labels, input_mask = [b.to(device) for b in batch]
bsz, seq_len, n_feats = batch_seq.shape
batch_seq = batch_seq.permute(0, 2, 1).contiguous()
batch_seq = F.pad(batch_seq, (0, 512 - seq_len), "constant", 0)
optimizer.zero_grad(set_to_none=True)
if args.use_amp:
with torch.cuda.amp.autocast():
pred = model(batch_seq, input_mask)
pred = pred.permute(0, 2, 1).contiguous()
true = torch.cat((batch_cdd, batch_next_point.unsqueeze(1)), dim=1)
loss = criterion(pred, true)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
scaler.step(optimizer)
scaler.update()
else:
pred = model(batch_seq, input_mask)
pred = pred.permute(0, 2, 1).contiguous()
true = torch.cat((batch_cdd, batch_next_point.unsqueeze(1)), dim=1)
loss = criterion(pred, true)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
scheduler.step()
epoch_losses.append(loss.item())
epoch_mean_loss = np.mean(epoch_losses)
losses.append(epoch_mean_loss)
print(f"Epoch {epoch + 1}: Train loss: {epoch_mean_loss:.3f}\n")
elapsed = time.time() - start
average_loss = np.mean(losses)
print(f'Time elapsed: {elapsed}')
print(f"Total train loss: {average_loss:.3f}\n")
# Evaluation
print(f'[DEBUG]: Fine-tuned eval for horizon length {args.pred_len}...')
run_test(test_loader, True, 'lp')
# Save model
torch.save(model.state_dict(), os.path.join(path, 'checkpoint'))