-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
204 lines (169 loc) · 9.77 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import random
import argparse
import datetime
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.cuda.amp import GradScaler
import wandb
from data.data_loader import get_loader
from models.model_loader import create_model
from losses.losses import SemiLoss, NegEntropy, InfoNCELoss, PLRLoss
from utils.train_utils import adjust_lr, resume, save, init_prototypes, gmm_selection, uniform_warmup, uniform_train, val
from utils.common_utils import iterateAllFile
parser = argparse.ArgumentParser(description='PyTorch PLReMix Training')
parser.add_argument('--dataset', default='cifar10', type=str, choices=['cifar10', 'cifar100', 'tiny_imagenet'])
parser.add_argument('--num_classes', default=10, type=int)
parser.add_argument('--data_path', default='./data/cifar10/', type=str, help='path to dataset')
parser.add_argument('--noise_mode', default='sym')
parser.add_argument('--r', default=0.5, type=float, help='noise ratio')
parser.add_argument('--backbone', default='preact_resnet18', type=str)
parser.add_argument('--pretrain', action='store_true', help='use pretrain model')
parser.add_argument('--batch_size', default=64, type=int, help='train batch size')
parser.add_argument('--lr', '--learning_rate', default=0.02, type=float, help='initial learning rate')
parser.add_argument('--wd', default=5e-4, type=float, help='weight decay')
parser.add_argument('--cos', action='store_true', default=False, help='use cosine lr schedule')
parser.add_argument('--num_epochs', default=400, type=int)
parser.add_argument('--num_workers', default=16, type=int, help='num of workers to use')
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--seed', default=123)
parser.add_argument('--alpha', default=4, type=float, help='parameter for Beta')
parser.add_argument('--lambda_u', default=25, type=float, help='weight for unsupervised loss')
parser.add_argument('--lambda_c', default=1, type=float, help='weight for contrastive loss')
parser.add_argument('--p_threshold', default=0.5, type=float, help='clean probability threshold')
parser.add_argument('--T', default=0.5, type=float, help='sharpening temperature in semi loss')
parser.add_argument('--topk', default=3, type=int, help='kappa in PLR loss')
parser.add_argument('--semi_m', default=0.99, type=float, help='momentum of the pseudo selection')
parser.add_argument('--aug', default='autoaug', type=str,
choices=['train', 'simclr', 'autoaug', 'randaug'],
help='use FixMatch following AugDesc-WS')
parser.add_argument('--crl', default='flat_plr', type=str, choices=['plr', 'flat_plr'])
parser.add_argument('--mcrop', action='store_true', help='use multi-crop')
parser.add_argument('--wo_wandb', action='store_true', help='without using wandb to log')
parser.add_argument('--offline', action='store_true', help='use wandb in offline mode')
parser.add_argument('--resume_id', default='', type=str)
args = parser.parse_args()
device = torch.device('cuda:{}'.format(args.gpu))
torch.cuda.set_device(args.gpu)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if torch.__version__ >= '2.0.0':
torch.set_float32_matmul_precision('high')
if args.dataset == 'cifar10':
args.num_classes = 10
args.warm_up = 10
elif args.dataset == 'cifar100':
args.num_classes = 100
args.warm_up = 30
elif args.dataset == 'tiny_imagenet':
args.num_classes = 200
args.warm_up = 10
cur_time = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
if not args.wo_wandb:
wandb.init(project=args.dataset,
name=cur_time if args.resume_id == '' else None,
id=None if args.resume_id == '' else args.resume_id,
resume=None if args.resume_id == '' else 'must',
config=vars(args),
mode='offline' if args.offline else 'online')
print(vars(args))
for root, f in iterateAllFile('.'):
if 'wandb' not in root and 'archive' not in root and 'torchinductor' not in root:
if f[-3:] == '.py':
# print(root, f)
wandb.save(f, base_path=root, policy="now")
CHECKPOINT_PATH = "./checkpoint/{}.tar".format(wandb.run.id)
if not os.path.exists('./checkpoint'):
os.makedirs('./checkpoint')
def main():
meta_info = {'r': args.r, 'noise_mode': args.noise_mode, 'dataset': args.dataset, 'transform': 'train',
'num_classes': args.num_classes, 'probability': None, 'pred_clean': None, 'pred_noisy': None,
'output': None, 'device': device, 'pseudo_th': None, 'multi_crop': args.mcrop, 'semi_m': args.semi_m,
'p_model': (torch.ones((args.num_classes)) / args.num_classes).to(device),
'time_p': (torch.ones((args.num_classes)) / args.num_classes).mean().to(device),
'noise_file': './data/noise_file/{}/{:.2f}{}.json'.format(
args.dataset, args.r, '_asym' if args.noise_mode == 'asym' else '')}
print('Building net')
net1 = create_model(args, device, args.pretrain)
net2 = create_model(args, device, args.pretrain)
cudnn.benchmark = True
optimizer1 = optim.SGD(net1.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.wd)
optimizer2 = optim.SGD(net2.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.wd)
semi_loss = SemiLoss()
eval_loss = nn.CrossEntropyLoss(reduction='none')
ce_loss = nn.CrossEntropyLoss()
info_nce_loss = InfoNCELoss(temperature=0.1,
batch_size=args.batch_size * 2,
flat=('flat' in args.crl),
n_views=8 if args.mcrop else 2)
plr_loss = PLRLoss(flat=('flat' in args.crl))
conf_penalty = NegEntropy()
scaler = GradScaler()
milestone1, milestone2 = 40, 70
topk_list = [args.topk for _ in range(args.num_epochs + 1)]
if args.topk > 1:
topk_list[milestone1:] = [args.topk - 1 for _ in range(args.num_epochs + 1)]
if args.topk > 2:
topk_list[milestone2:] = [args.topk - 2 for _ in range(args.num_epochs + 1)]
pseudo_th_list = [0.8 for _ in range(args.num_epochs + 1)]
val_loader = get_loader(args, 'val', meta_info)
all_loss = [[], []] # save the history of losses from two networks
all_loss_proto = [[], []] # save the history of distances from two networks
epoch = 0
if not args.wo_wandb and wandb.run.resumed and os.path.exists(CHECKPOINT_PATH): # resume from checkpoint
net1, net2, optimizer1, optimizer2, all_loss, all_loss_proto, meta_info, epoch = (
resume(CHECKPOINT_PATH, net1, net2, optimizer1, optimizer2, device))
while epoch < args.num_epochs + 1:
meta_info['epoch'] = epoch
adjust_lr(args.lr, args.cos, optimizer1, optimizer2, epoch, args.num_epochs)
if epoch < args.warm_up:
warmup_train_loader = get_loader(args, 'warmup', meta_info)
print('\nWarmup Net1')
meta_info['cur_net'] = 'net1'
uniform_warmup(args, epoch, net1, optimizer1, warmup_train_loader,
ce_loss, info_nce_loss, conf_penalty, scaler, device)
print('\nWarmup Net2')
meta_info['cur_net'] = 'net2'
uniform_warmup(args, epoch, net2, optimizer2, warmup_train_loader,
ce_loss, info_nce_loss, conf_penalty, scaler, device)
if epoch == args.warm_up - 1:
eval_loader = get_loader(args, 'eval_train', meta_info)
init_prototypes(net1, eval_loader, device)
init_prototypes(net2, eval_loader, device)
else:
print('\nGMM Select')
eval_loader = get_loader(args, 'eval_train', meta_info)
prob1, pred_clean1, pred_noisy1, all_loss[0], all_loss_proto[0], pl1, op1, pt1, ft1, paths1 = (
gmm_selection(args, 'net1', net1, all_loss[0], all_loss_proto[0],
eval_loader, eval_loss, device, epoch))
prob2, pred_clean2, pred_noisy2, all_loss[1], all_loss_proto[1], pl2, op2, pt2, ft2, paths2 = (
gmm_selection(args, 'net2', net2, all_loss[1], all_loss_proto[1],
eval_loader, eval_loss, device, epoch))
print('\nUniform Train Net1')
meta_info.update(
{'cur_net': 'net1', 'probability': prob2, 'pred_clean': pred_clean2, 'pred_noisy': pred_noisy2,
'pred_label': pl2, 'cls_outputs': op2, 'proj_outputs': pt2, 'features': ft2,
'pseudo_th': pseudo_th_list[epoch], 'topk': topk_list[epoch], 'paths': paths2})
labeled_train_loader, unlabeled_train_loader = get_loader(args, 'train', meta_info)
uniform_train(args, epoch, net1, net2, optimizer1, labeled_train_loader, unlabeled_train_loader,
semi_loss, plr_loss, meta_info, scaler, device)
print('\nUniform Train Net2')
meta_info.update(
{'cur_net': 'net2', 'probability': prob1, 'pred_clean': pred_clean1, 'pred_noisy': pred_noisy1,
'pred_label': pl1, 'cls_outputs': op1, 'proj_outputs': pt1, 'features': ft1,
'pseudo_th': pseudo_th_list[epoch], 'topk': topk_list[epoch], 'paths': paths1})
labeled_train_loader, unlabeled_train_loader = get_loader(args, 'train', meta_info)
uniform_train(args, epoch, net2, net1, optimizer2, labeled_train_loader, unlabeled_train_loader,
semi_loss, plr_loss, meta_info, scaler, device)
print('\nValidation')
val(args, epoch, net1, net2, val_loader, device)
if not args.wo_wandb:
save(CHECKPOINT_PATH, net1, net2, optimizer1, optimizer2, all_loss, all_loss_proto, meta_info, epoch)
epoch += 1
if not args.wo_wandb:
wandb.finish()
if __name__ == '__main__':
main()