-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsdi_utils.py
464 lines (359 loc) · 15.6 KB
/
sdi_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms.v2 as transforms
import skimage
import skimage.io
import skimage.transform
import random
from PIL import Image
import cv2
try:
import open3d as o3d
except:
print("Open3D not installed \n")
from transformers import PretrainedConfig
def find_largest_connected_component(mask: torch.Tensor):
# Check the input mask, it must be a 0-1 mask (not -1-1)
if mask.min() < 0:
raise ValueError("Invalid mask")
# Convert mask to numpy array and invert it (0 becomes 1, 1 becomes 0), because skimage.measure.label requires 0 for background
mask_array = 1 - mask
mask_array = mask_array.cpu().numpy()
new_mask_list = []
for b in range(mask_array.shape[0]):
cur_mask = mask_array[b]
# If the mask is fully fill_value or fully one, do not find the largest connected component
if np.all(cur_mask == 0) or np.all(cur_mask == 1):
new_mask_list.append(cur_mask)
continue
# Label connected components
labeled_array, num_features = skimage.measure.label(cur_mask, connectivity=2, return_num=True)
if num_features == 0:
raise ValueError("No connected components found")
# Find the largest component
largest_component_label = np.argmax(np.bincount(labeled_array.flat)[1:]) + 1
largest_component = (labeled_array == largest_component_label)
new_mask_list.append(largest_component)
new_mask = np.stack(new_mask_list, axis=0)
new_mask = 1 - new_mask
new_mask = torch.from_numpy(new_mask).to(mask.device)
return new_mask
def get_conditioning_channels(conditioning_maps):
if conditioning_maps is None:
raise ValueError("conditioning_maps is None")
num_conditioning_channels = 0
for key in conditioning_maps:
if key == 'normal' or key == 'diffuse' or key == 'shading':
num_conditioning_channels += 3
elif key == 'depth' or key == 'mask' or key == 'roughness' or key == 'metallic':
num_conditioning_channels += 1
return num_conditioning_channels
def compute_distance_bgpc_objpc(bgpc, objpc):
# Create Open3D PointCloud objects
bg_cloud = o3d.geometry.PointCloud()
bg_cloud.points = o3d.utility.Vector3dVector(bgpc)
obj_cloud = o3d.geometry.PointCloud()
obj_cloud.points = o3d.utility.Vector3dVector(objpc)
# Compute distances using Open3D KDTree
dists = bg_cloud.compute_point_cloud_distance(obj_cloud)
dists = np.asarray(dists)
return dists
def depth_map_to_point_cloud(depth_map, fov):
if isinstance(depth_map, np.ndarray):
if len(depth_map.shape) == 2:
height, width = depth_map.shape
else:
height, width, _ = depth_map.shape
fov_rad = np.radians(fov)
focal_length = width / (2 * np.tan(fov_rad / 2))
i, j = np.meshgrid(np.arange(height), np.arange(width))
i = i - height / 2
j = j - width / 2
y = (i * depth_map) / focal_length
x = (j * depth_map) / focal_length
z = depth_map
point_cloud = np.stack([x, -y, -z], axis=-1)
elif isinstance(depth_map, torch.Tensor):
c, height, width = depth_map.shape
fov_rad = torch.tensor(np.radians(fov), dtype=depth_map.dtype, device=depth_map.device)
focal_length = width / (2 * torch.tan(fov_rad / 2))
i, j = torch.meshgrid(torch.arange(height, dtype=depth_map.dtype, device=depth_map.device), torch.arange(width, dtype=depth_map.dtype, device=depth_map.device))
i = i - height / 2
j = j - width / 2
y = (i * depth_map) / focal_length
x = (j * depth_map) / focal_length
z = depth_map
point_cloud = torch.cat([x, -y, -z], dim=0)
else:
raise NotImplementedError
return point_cloud
def depth_map_to_point_cloud_with_rgb(depth_map, rgb_image, fov):
# Get point cloud
point_cloud = depth_map_to_point_cloud(depth_map, fov)
# Combine depth map and RGB image
if isinstance(rgb_image, np.ndarray):
point_cloud_rgb = np.concatenate([point_cloud, rgb_image], axis=-1)
elif isinstance(rgb_image, torch.Tensor):
point_cloud_rgb = torch.cat([point_cloud, rgb_image], dim=0)
return point_cloud_rgb
def color_rebalance(out_image, bg_image):
bg_avg_color = torch.mean(bg_image, dim=(2, 3), keepdim=True)
out_avg_color = torch.mean(out_image, dim=(2, 3), keepdim=True)
ratio = (bg_avg_color / out_avg_color)
return ratio
def comp_normal_to_openrooms_normal(nm):
new_nm = nm.copy()
# Input normal map should be in [-1, 1] range
if new_nm.min() >= 0:
new_nm = new_nm * 2 - 1
new_nm[:, :, 2] = -new_nm[:, :, 2]
# Transform it back to [0, 1] range
new_nm = new_nm * 0.5 + 0.5
return new_nm.clip(0, 1)
def comp_normal_to_openrooms_normal_tensor(nm):
new_nm = nm.clone()
# Input normal map should be in [-1, 1] range
if new_nm.min() >= 0:
new_nm = new_nm * 2 - 1
new_nm[:, 2, :, :] = -new_nm[:, 2, :, :]
# Transform it back to [0, 1] range
new_nm = new_nm * 0.5 + 0.5
return new_nm.clip(0, 1)
def omnidata_normal_to_openrooms_normal(normal):
# Input normal map should be in [-1, 1] range
if normal.min() >= 0:
normal = normal * 2 - 1
normal[:, 1, :, :] = -normal[:, 1, :, :]
normal[:, 2, :, :] = -normal[:, 2, :, :]
# Transform it back to [0, 1] range
normal = normal * 0.5 + 0.5
return normal
def stablenormal_normal_to_openrooms_normal(normal):
# Input normal map should be in [-1, 1] range
if normal.min() >= 0:
normal = normal * 2 - 1
normal[:, 0, :, :] = -normal[:, 0, :, :]
# Transform it back to [0, 1] range
normal = normal * 0.5 + 0.5
return normal
def normalized_vector_img_to_rgb_img(vector_img):
return np.clip(np.array([
vector_img[..., 0] * 0.5 + 0.5,
vector_img[..., 1] * 0.5 + 0.5,
vector_img[..., 2] * 0.5 + 0.5,
]), 0, 1).transpose(1, 2, 0)
def seed_all(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def log_image_to_disk(image, path):
if len(image.shape) == 4:
image = image.detach().cpu().numpy()[0].transpose(1, 2, 0)
else:
image = image.detach().cpu().numpy().transpose(1, 2, 0)
if image.shape[2] == 1:
image = np.tile(image, (1, 1, 3))
image = np.clip(image, 0, 1)
image = (image * 255).astype(np.uint8)
skimage.io.imsave(path, image)
def tensor_to_numpy(img, initial_range=(0, 1)):
# scale to [0, 1]
img = img - initial_range[0]
img = img / (initial_range[1] - initial_range[0])
if img.dim() == 4:
img = img.squeeze(0)
return np.clip(img.permute(1, 2, 0).detach().cpu().numpy(), 0, 1)
def numpy_to_pil(img):
img = (img * 255.0).astype("uint8")
if img.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_img = Image.fromarray(img.squeeze(), mode="L")
else:
pil_img = Image.fromarray(img, mode="RGB")
return pil_img
def tensor_to_pil(img, initial_range=(0, 1)):
img = tensor_to_numpy(img, initial_range)
img = numpy_to_pil(img)
return img
def tensor_to_pil_list(images, initial_range=(0, 1)):
images = tensor_to_numpy_list(images, initial_range)
images = numpy_to_pil_list(images)
return images
def tensor_to_numpy_list(images, initial_range=(0, 1)):
# scale to [0, 1]
images = images - initial_range[0]
images = images / (initial_range[1] - initial_range[0])
return np.clip(images.permute(0, 2, 3, 1).cpu().numpy(), 0, 1)
def numpy_to_pil_list(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255.0).astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image, mode="RGB") for image in images]
return pil_images
def impath_to_numpy(image_name, is_Gamma=False):
image = cv2.imread(image_name, -1)
image = np.asarray(image, dtype=np.float32)
image = image / 255.0
if is_Gamma:
image = image**2.2
if len(image.shape) == 2:
image = image[:, :, np.newaxis]
if len(image.shape) == 3:
if image.shape[-1] == 4:
image = image[:, :, :3]
image = image[:, :, ::-1]
return np.ascontiguousarray(image)
def numpy_to_tensor(img):
img = img.transpose(2, 0, 1)
img = torch.from_numpy(img).unsqueeze(0).float()
return img
def impath_to_tensor(image_name, is_Gamma=False):
img = impath_to_numpy(image_name, is_Gamma)
img = numpy_to_tensor(img)
return img
def minmax_norm(img):
return (img - torch.min(img)) / (torch.max(img) - torch.min(img))
def standardize_depth_map(img, mask_valid=None, trunc_value=0.1):
if mask_valid is not None:
img[~mask_valid] = torch.nan
sorted_img = torch.sort(torch.flatten(img))[0]
# Remove nan, nan at the end of sort
num_nan = sorted_img.isnan().sum()
if num_nan > 0:
sorted_img = sorted_img[:-num_nan]
# Remove outliers
trunc_img = sorted_img[int(trunc_value * len(sorted_img)): int((1 - trunc_value) * len(sorted_img))]
trunc_mean = trunc_img.mean()
trunc_var = trunc_img.var()
eps = 1e-6
# Replace nan by mean
img = torch.nan_to_num(img, nan=trunc_mean.item())
# Standardize
img = (img - trunc_mean) / torch.sqrt(trunc_var + eps)
return img
def load_model_from_checkpoint(model, fpath):
ckpt = torch.load(fpath, map_location='cpu')
ckpt = ckpt['model']
load_dict = {}
for k, v in ckpt.items():
if k.startswith('module.'):
k_ = k.replace('module.', '')
load_dict[k_] = v
else:
load_dict[k] = v
model.load_state_dict(load_dict)
return model
def load_state_dict(model, state_dict):
"""Load state_dict into model, handling DataParallel and DistributedDataParallel. Also checks for "model" key in state_dict.
DataParallel prefixes state_dict keys with 'module.' when saving.
If the model is not a DataParallel model but the state_dict is, then prefixes are removed.
If the model is a DataParallel model but the state_dict is not, then prefixes are added.
"""
state_dict = state_dict.get('model', state_dict)
# if model is a DataParallel model, then state_dict keys are prefixed with 'module.'
do_prefix = isinstance(
model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel))
state = {}
for k, v in state_dict.items():
if k.startswith('module.') and not do_prefix:
k = k[7:]
if not k.startswith('module.') and do_prefix:
k = 'module.' + k
state[k] = v
model.load_state_dict(state, strict=True)
print("Loaded successfully")
return model
def load_wts(model, checkpoint_path):
ckpt = torch.load(checkpoint_path, map_location='cpu')
return load_state_dict(model, ckpt)
def load_ckpt(model, checkpoint):
model = load_wts(model, checkpoint)
print("Loaded weights from {0}".format(checkpoint))
return model
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
revision=revision,
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "RobertaSeriesModelWithTransformation":
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
return RobertaSeriesModelWithTransformation
else:
raise ValueError(f"{model_class} is not supported.")
class DetailTransfer:
# Cited from https://github.com/kijai/ComfyUI-IC-Light, Apache License 2.0
@staticmethod
def adjust_mask(mask, target_tensor):
# Add a channel dimension and repeat to match the channel number of the target tensor
if len(mask.shape) == 3:
mask = mask.unsqueeze(1) # Add a channel dimension
target_channels = target_tensor.shape[1]
mask = mask.expand(-1, target_channels, -1, -1) # Expand the channel dimension to match the target tensor's channels
return mask
@staticmethod
def process(target, source, mask,
mode='add',
blur_sigma=1.0, blend_factor=1.0):
'''
Args:
target (torch.Tensor): The target image to apply the effect to.
source (torch.Tensor): The source image to use for the effect.
mask (torch.Tensor): The mask to use for the effect, only the masked region of the output tensor will be blended with the target tensor.
mode (str): The blending mode to use. Options are: ['add', 'multiply', 'screen', 'overlay', 'soft_light', 'hard_light', 'color_dodge', 'color_burn', 'difference', 'exclusion', 'divide'].
blur_sigma (float): The sigma value for the Gaussian blur, default: 1.0, min: 0.1, max: 100.0, step: 0.01.
blend_factor (float): The blend factor to use, default: 1.0, min: -10.0, max: 10.0, step: 0.001, round: 0.001.
'''
B, C, H, W = target.shape
device = target.device
target_tensor = target.clone()
source_tensor = source.clone()
if target.shape[1:] != source.shape[1:]:
source_tensor = F.interpolate(source_tensor, (H, W), mode="bilinear", align_corners=False)
if source.shape[0] < B:
source = source[0].unsqueeze(0).repeat(B, 1, 1, 1)
kernel_size = int(6 * int(blur_sigma) + 1)
gaussian_blur = transforms.GaussianBlur(kernel_size=(kernel_size, kernel_size), sigma=(blur_sigma, blur_sigma))
blurred_target = gaussian_blur(target_tensor)
blurred_source = gaussian_blur(source_tensor)
if mode == "add":
tensor_out = (source_tensor - blurred_source) + blurred_target
elif mode == "multiply":
tensor_out = source_tensor * blurred_target
elif mode == "screen":
tensor_out = 1 - (1 - source_tensor) * (1 - blurred_target)
elif mode == "overlay":
tensor_out = torch.where(blurred_target < 0.5, 2 * source_tensor * blurred_target, 1 - 2 * (1 - source_tensor) * (1 - blurred_target))
elif mode == "soft_light":
tensor_out = (1 - 2 * blurred_target) * source_tensor**2 + 2 * blurred_target * source_tensor
elif mode == "hard_light":
tensor_out = torch.where(source_tensor < 0.5, 2 * source_tensor * blurred_target, 1 - 2 * (1 - source_tensor) * (1 - blurred_target))
elif mode == "difference":
tensor_out = torch.abs(blurred_target - source_tensor)
elif mode == "exclusion":
tensor_out = 0.5 - 2 * (blurred_target - 0.5) * (source_tensor - 0.5)
elif mode == "color_dodge":
tensor_out = blurred_target / (1 - source_tensor)
elif mode == "color_burn":
tensor_out = 1 - (1 - blurred_target) / source_tensor
elif mode == "divide":
tensor_out = (source_tensor / blurred_source) * blurred_target
else:
tensor_out = source_tensor
# Only blend the masked region of the output tensor with the target tensor
tensor_out = tensor_out * mask * blend_factor + target_tensor * mask * (1 - blend_factor)
# Return the output tensor
tensor_out = tensor_out * mask + target_tensor * (1 - mask)
return tensor_out