-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcompositor.py
185 lines (155 loc) · 8.76 KB
/
compositor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from PIL import Image
from torchvision.transforms import v2
from torchvision.ops import masks_to_boxes
import cv2
import sdi_utils
EPS = 1e-6
def compose_bg_obj_batch(dst_batch, obj_batch,
conditioning_maps,
fill_value,
shading_maskout_mode='PointCloud',
shading_maskout_bbox_dilation=30, shading_maskout_bbox_depth_range=4.0,
point_cloud_fov=50, shading_maskout_pc_type='absolute', shading_maskout_pc_range=0.8, shading_maskout_pc_range_relative=1.0,
shading_maskout_pc_above_cropping_type='abovebbox', shading_maskout_obj_dilation=0):
bs = obj_batch['depth'].shape[0]
device = obj_batch['depth'].device
image_logs = [{} for _ in range(bs)]
obj_depth = obj_batch['depth']
obj_mask = obj_batch['mask']
dst_depth = dst_batch["controlnet_inputs"]["depth"]
dst_normal = dst_batch["controlnet_inputs"]["normal"]
dst_diffuse = dst_batch["controlnet_inputs"]["diffuse"]
# Add a eps to background diffuse to avoid pure black diffuse
dst_diffuse += EPS
dst_shading = dst_batch["controlnet_inputs"]["shading"]
if 'roughness' in conditioning_maps:
dst_roughness = dst_batch["controlnet_inputs"]["roughness"]
if 'metallic' in conditioning_maps:
dst_metallic = dst_batch["controlnet_inputs"]["metallic"]
comp_batch = {}
for k in conditioning_maps:
v = dst_batch["controlnet_inputs"][k].clone()
if k == 'depth':
dst_pil_list = sdi_utils.tensor_to_pil_list(v, [v.min(), v.max()])
else:
dst_pil_list = sdi_utils.tensor_to_pil_list(v)
for sample_idx in range(bs):
image_logs[sample_idx].update({f"dst_{k}": dst_pil_list[sample_idx]})
tmp_mask = obj_mask.expand_as(v)
if k == 'shading':
shading_maskout_mode = shading_maskout_mode
shading_maskout_bbox_dilation = shading_maskout_bbox_dilation
shading_maskout_bbox_depth_range = shading_maskout_bbox_depth_range
for b in range(bs):
if shading_maskout_mode == 'None':
pass
elif shading_maskout_mode == 'Obj':
v[b, tmp_mask[b, :, :, :] > 0.9] = fill_value
elif 'BBox' in shading_maskout_mode:
# Using dilated bounding box
bbox = masks_to_boxes(obj_mask.squeeze(dim=1)).int()
_, _, h, w = v.shape
x1, y1, x2, y2 = bbox[b]
x1 = x1 - shading_maskout_bbox_dilation if x1 - shading_maskout_bbox_dilation > 0 else 0
y1 = y1 - shading_maskout_bbox_dilation if y1 - shading_maskout_bbox_dilation > 0 else 0
x2 = x2 + shading_maskout_bbox_dilation if x2 + shading_maskout_bbox_dilation < w else w
y2 = y2 + shading_maskout_bbox_dilation if y2 + shading_maskout_bbox_dilation < h else h
# Crop a rectangle in shading
v[b, :, y1:y2, x1:x2] = fill_value
if shading_maskout_mode == 'BBoxWithDepth':
# If higher than a threshold, use the whole source background shading
avg_obj_depth = obj_depth[obj_mask[b, :, :, :] > 0.9].mean()
bg_depth = dst_depth[b, :, :, :]
avg_obj_depth = avg_obj_depth.expand_as(bg_depth)
out_of_depth_range_mask = torch.abs(bg_depth - avg_obj_depth) > shading_maskout_bbox_depth_range
if shading_maskout_pc_above_cropping_type == 'abovebbox':
out_of_depth_range_mask[:, :y1, :] = True
elif shading_maskout_pc_above_cropping_type == 'argmin':
obj_mask_argmax = torch.argmax(obj_mask[b, :, :, :], dim=1, keepdim=True)
for j in range(w):
out_of_depth_range_mask[:, :obj_mask_argmax[0, 0, j], j] = True
out_of_depth_range_mask = torch.logical_and(out_of_depth_range_mask, ~(obj_mask[b, :, :, :].bool()))
out_of_depth_range_mask = out_of_depth_range_mask.expand_as(dst_shading[b, :, :, :])
v[b, out_of_depth_range_mask] = dst_shading[b, out_of_depth_range_mask]
elif shading_maskout_mode == 'PointCloud':
bg_depth = dst_depth[b, :, :, :]
bg_point_cloud = sdi_utils.depth_map_to_point_cloud(bg_depth, fov=point_cloud_fov).permute(1, 2, 0).reshape(-1, 3)
obj_depth_pc = obj_depth[b, :, :, :]
obj_point_cloud = sdi_utils.depth_map_to_point_cloud(obj_depth_pc, fov=point_cloud_fov)
obj_point_cloud = obj_point_cloud.permute(1, 2, 0)[(obj_mask[b, 0, :, :] > 0.9), :]
dists = sdi_utils.compute_distance_bgpc_objpc(bg_point_cloud.cpu().numpy(), obj_point_cloud.cpu().numpy())
dists = dists.reshape(bg_depth.shape[1], bg_depth.shape[2], 1)
dists = torch.from_numpy(dists).to(device).permute(2, 0, 1)
pc_crop_mask = None
if shading_maskout_pc_type == 'absolute':
pc_crop_mask = dists < shading_maskout_pc_range
elif shading_maskout_pc_type == 'relative':
object_height = obj_point_cloud[:, 1].max() - obj_point_cloud[:, 1].min()
pc_crop_mask = dists < object_height * shading_maskout_pc_range_relative
else:
raise NotImplementedError
_, _, h, w = v.shape
if shading_maskout_pc_above_cropping_type == 'abovebbox':
bbox = masks_to_boxes(obj_mask.squeeze(dim=1)).int()
x1, y1, x2, y2 = bbox[b]
pc_crop_mask[:, :y1, :] = False
elif shading_maskout_pc_above_cropping_type == 'argmin':
obj_mask_argmax = torch.argmax(obj_mask[b, :, :, :], dim=1, keepdim=True)
for j in range(w):
if obj_mask_argmax[0, 0, j] > 0:
pc_crop_mask[:, :obj_mask_argmax[0, 0, j], j] = False
pc_crop_mask = pc_crop_mask.expand_as(dst_shading[b, :, :, :])
obj_mask_b = obj_mask > 0.9
crop_mask = torch.logical_or(pc_crop_mask, obj_mask_b[b, :, :, :])
v[b, crop_mask] = fill_value
# Object mask dilation
if shading_maskout_obj_dilation > 0:
ks = shading_maskout_obj_dilation
obj_mask_dilated = cv2.dilate(obj_mask[b, 0, :, :].cpu().numpy(), np.ones((ks, ks)), iterations=1)
obj_mask_dilated = torch.from_numpy(obj_mask_dilated).to(device)
obj_mask_dilated = obj_mask_dilated.expand_as(v[b, :, :, :])
v[b, obj_mask_dilated > 0.9] = fill_value
elif k == 'depth':
# Find the nearest valid depth value
obj_area = obj_batch[k]
bg_area = v
v[tmp_mask > 0.9] = obj_area[tmp_mask > 0.9]
v = torch.clamp(v, min=0)
elif k == 'masked_bg':
pass
else:
v[tmp_mask > 0.9] = obj_batch[k][tmp_mask > 0.9]
# Save to comp_batch
assert torch.isnan(v).sum() == 0, f"NaN in {k}"
comp_batch[k] = v
controlnet_inputs = []
for k, v in comp_batch.items():
if k == 'mask':
v = torch.ones_like(v)
shading = comp_batch['shading']
v[shading[:, 0:1, :, :] == fill_value] = fill_value
v = v.float()
comp_batch[k] = v
elif k == 'masked_bg':
shading = comp_batch['shading']
v[shading[:, :, :, :] == fill_value] = fill_value
comp_batch[k] = v
# obj_mask_b = (obj_mask > 0.9).expand_as(v)
# v[obj_mask_b] = fill_value
controlnet_inputs.append(v)
if k == "depth":
v_pil_list = sdi_utils.tensor_to_pil_list(v, [v.min(), v.max()])
elif k == "diffuse":
v_save = v.clone()
v_save[obj_mask.expand_as(v) > 0.9] = v_save[obj_mask.expand_as(v) > 0.9] ** (1 / 2.2)
v_pil_list = sdi_utils.tensor_to_pil_list(v_save.clamp_(0, 1))
else:
v_pil_list = sdi_utils.tensor_to_pil_list(v)
for sample_idx in range(bs):
image_logs[sample_idx].update({f"comp_{k}": v_pil_list[sample_idx]})
conditioning = torch.cat(controlnet_inputs, dim=1)
return comp_batch, conditioning, image_logs