forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 167
/
fdcan.c
472 lines (414 loc) · 18.4 KB
/
fdcan.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2014-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "can.h"
#include "irq.h"
#if MICROPY_HW_ENABLE_CAN && MICROPY_HW_ENABLE_FDCAN
#define FDCAN_ELEMENT_MASK_STDID (0x1ffc0000) // Standard Identifier
#define FDCAN_ELEMENT_MASK_EXTID (0x1fffffff) // Extended Identifier
#define FDCAN_ELEMENT_MASK_RTR (0x20000000) // Remote Transmission Request
#define FDCAN_ELEMENT_MASK_XTD (0x40000000) // Extended Identifier
#define FDCAN_ELEMENT_MASK_ESI (0x80000000) // Error State Indicator
#define FDCAN_ELEMENT_MASK_TS (0x0000ffff) // Timestamp
#define FDCAN_ELEMENT_MASK_DLC (0x000f0000) // Data Length Code
#define FDCAN_ELEMENT_MASK_BRS (0x00100000) // Bit Rate Switch
#define FDCAN_ELEMENT_MASK_FDF (0x00200000) // FD Format
#define FDCAN_ELEMENT_MASK_FIDX (0x7f000000) // Filter Index
#define FDCAN_ELEMENT_MASK_ANMF (0x80000000) // Accepted Non-matching Frame
#define FDCAN_RX_FIFO0_MASK (FDCAN_FLAG_RX_FIFO0_MESSAGE_LOST | FDCAN_FLAG_RX_FIFO0_FULL | FDCAN_FLAG_RX_FIFO0_NEW_MESSAGE)
#define FDCAN_RX_FIFO1_MASK (FDCAN_FLAG_RX_FIFO1_MESSAGE_LOST | FDCAN_FLAG_RX_FIFO1_FULL | FDCAN_FLAG_RX_FIFO1_NEW_MESSAGE)
#define FDCAN_ERROR_STATUS_MASK (FDCAN_FLAG_ERROR_PASSIVE | FDCAN_FLAG_ERROR_WARNING | FDCAN_FLAG_BUS_OFF)
#if defined(STM32H7)
// adaptations for H7 to G4 naming convention in HAL
#define FDCAN_IT_GROUP_RX_FIFO0 (FDCAN_ILS_RF0NL | FDCAN_ILS_RF0FL | FDCAN_ILS_RF0LL)
#define FDCAN_IT_GROUP_BIT_LINE_ERROR (FDCAN_ILS_EPE | FDCAN_ILS_ELOE)
#define FDCAN_IT_GROUP_PROTOCOL_ERROR (FDCAN_ILS_ARAE | FDCAN_ILS_PEDE | FDCAN_ILS_PEAE | FDCAN_ILS_WDIE | FDCAN_ILS_BOE | FDCAN_ILS_EWE)
#define FDCAN_IT_GROUP_RX_FIFO1 (FDCAN_ILS_RF1NL | FDCAN_ILS_RF1FL | FDCAN_ILS_RF1LL)
#endif
// The dedicated Message RAM should be 2560 words, but the way it's defined in stm32h7xx_hal_fdcan.c
// as (SRAMCAN_BASE + FDCAN_MESSAGE_RAM_SIZE - 0x4U) limits the usable number of words to 2559 words.
#define FDCAN_MESSAGE_RAM_SIZE (2560 - 1)
// also defined in <PROC>_hal_fdcan.c, but not able to declare extern and reach the variable
const uint8_t DLCtoBytes[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 32, 48, 64};
bool can_init(pyb_can_obj_t *can_obj, uint32_t mode, uint32_t prescaler, uint32_t sjw, uint32_t bs1, uint32_t bs2, bool auto_restart) {
(void)auto_restart;
FDCAN_InitTypeDef *init = &can_obj->can.Init;
// Configure FDCAN with FD frame and BRS support.
init->FrameFormat = FDCAN_FRAME_FD_BRS;
init->Mode = mode;
init->NominalPrescaler = prescaler; // tq = NominalPrescaler x (1/fdcan_ker_ck)
init->NominalSyncJumpWidth = sjw;
init->NominalTimeSeg1 = bs1; // NominalTimeSeg1 = Propagation_segment + Phase_segment_1
init->NominalTimeSeg2 = bs2;
init->AutoRetransmission = ENABLE;
init->TransmitPause = DISABLE;
init->ProtocolException = ENABLE;
#if defined(STM32G4)
init->ClockDivider = FDCAN_CLOCK_DIV1;
init->DataPrescaler = 1;
init->DataSyncJumpWidth = 1;
init->DataTimeSeg1 = 1;
init->DataTimeSeg2 = 1;
init->StdFiltersNbr = 28; // /2 ? if FDCAN2 is used !!?
init->ExtFiltersNbr = 0; // Not used
init->TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
#elif defined(STM32H7)
// The dedicated FDCAN RAM is 2560 32-bit words and shared between the FDCAN instances.
// To support 2 FDCAN instances simultaneously, the Message RAM is divided in half by
// setting the second FDCAN memory offset to half the RAM size. With this configuration,
// the maximum words per FDCAN instance is 1280 32-bit words.
if (can_obj->can_id == PYB_CAN_1) {
init->MessageRAMOffset = 0;
} else {
init->MessageRAMOffset = FDCAN_MESSAGE_RAM_SIZE / 2;
}
// An element stored in the Message RAM contains an identifier, DLC, control bits, the
// data field and the specific transmission or reception bits field for control.
// The following code configures the different Message RAM sections per FDCAN instance.
// The RAM filtering section is configured for 64 x 1 word elements for 11-bit standard
// identifiers, and 31 x 2 words elements for 29-bit extended identifiers.
// The total number of words reserved for the filtering per FDCAN instance is 126 words.
init->StdFiltersNbr = 64;
init->ExtFiltersNbr = 31;
// The Tx event FIFO is used to store the message ID and the timestamp of successfully
// transmitted elements. The Tx event FIFO can store a maximum of 32 (2 words) elements.
// NOTE: Events are stored in Tx event FIFO only if tx_msg.TxEventFifoControl is enabled.
init->TxEventsNbr = 0;
// Transmission section is configured in FIFO mode operation, with no dedicated Tx buffers.
// The Tx FIFO can store a maximum of 32 elements (or 576 words), each element is 18 words
// long (to support a maximum of 64 bytes data field):
// 2 words header + 16 words data field (to support up to 64 bytes of data).
// The total number of words reserved for the Tx FIFO per FDCAN instance is 288 words.
init->TxBuffersNbr = 0;
init->TxFifoQueueElmtsNbr = 16;
init->TxElmtSize = FDCAN_DATA_BYTES_64;
init->TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
// Reception section is configured to use Rx FIFO 0 and Rx FIFO1, with no dedicated Rx buffers.
// Each Rx FIFO can store a maximum of 64 elements (1152 words), each element is 18 words
// long (to support a maximum of 64 bytes data field):
// 2 words header + 16 words data field (to support up to 64 bytes of data).
// The total number of words reserved for the Rx FIFOs per FDCAN instance is 864 words.
init->RxBuffersNbr = 0;
init->RxFifo0ElmtsNbr = 24;
init->RxFifo0ElmtSize = FDCAN_DATA_BYTES_64;
init->RxFifo1ElmtsNbr = 24;
init->RxFifo1ElmtSize = FDCAN_DATA_BYTES_64;
#endif
FDCAN_GlobalTypeDef *CANx = NULL;
const pin_obj_t *pins[2];
switch (can_obj->can_id) {
#if defined(MICROPY_HW_CAN1_TX)
case PYB_CAN_1:
CANx = FDCAN1;
pins[0] = MICROPY_HW_CAN1_TX;
pins[1] = MICROPY_HW_CAN1_RX;
break;
#endif
#if defined(MICROPY_HW_CAN2_TX)
case PYB_CAN_2:
CANx = FDCAN2;
pins[0] = MICROPY_HW_CAN2_TX;
pins[1] = MICROPY_HW_CAN2_RX;
break;
#endif
default:
return false;
}
// Enable FDCAN clock
__HAL_RCC_FDCAN_CLK_ENABLE();
// init GPIO
uint32_t pin_mode = MP_HAL_PIN_MODE_ALT;
uint32_t pin_pull = MP_HAL_PIN_PULL_UP;
for (int i = 0; i < 2; ++i) {
if (!mp_hal_pin_config_alt(pins[i], pin_mode, pin_pull, AF_FN_CAN, can_obj->can_id)) {
return false;
}
}
// init CANx
can_obj->can.Instance = CANx;
// catch bad configuration errors.
if (HAL_FDCAN_Init(&can_obj->can) != HAL_OK) {
return false;
}
// Disable acceptance of non-matching frames (enabled by default)
HAL_FDCAN_ConfigGlobalFilter(&can_obj->can, FDCAN_REJECT, FDCAN_REJECT, DISABLE, DISABLE);
// The configuration registers are locked after CAN is started.
HAL_FDCAN_Start(&can_obj->can);
// Reset all filters
for (int f = 0; f < init->StdFiltersNbr; ++f) {
can_clearfilter(can_obj, f, false);
}
for (int f = 0; f < init->ExtFiltersNbr; ++f) {
can_clearfilter(can_obj, f, true);
}
can_obj->is_enabled = true;
can_obj->num_error_warning = 0;
can_obj->num_error_passive = 0;
can_obj->num_bus_off = 0;
switch (can_obj->can_id) {
case PYB_CAN_1:
NVIC_SetPriority(FDCAN1_IT0_IRQn, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(FDCAN1_IT0_IRQn);
NVIC_SetPriority(FDCAN1_IT1_IRQn, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(FDCAN1_IT1_IRQn);
break;
#if defined(MICROPY_HW_CAN2_TX)
case PYB_CAN_2:
NVIC_SetPriority(FDCAN2_IT0_IRQn, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(FDCAN2_IT0_IRQn);
NVIC_SetPriority(FDCAN2_IT1_IRQn, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(FDCAN2_IT1_IRQn);
break;
#endif
default:
return false;
}
// FDCAN IT 0
HAL_FDCAN_ConfigInterruptLines(&can_obj->can, FDCAN_IT_GROUP_RX_FIFO0 | FDCAN_IT_GROUP_BIT_LINE_ERROR | FDCAN_IT_GROUP_PROTOCOL_ERROR, FDCAN_INTERRUPT_LINE0);
// FDCAN IT 1
HAL_FDCAN_ConfigInterruptLines(&can_obj->can, FDCAN_IT_GROUP_RX_FIFO1, FDCAN_INTERRUPT_LINE1);
uint32_t ActiveITs = FDCAN_IT_BUS_OFF | FDCAN_IT_ERROR_WARNING | FDCAN_IT_ERROR_PASSIVE;
ActiveITs |= FDCAN_IT_RX_FIFO0_NEW_MESSAGE | FDCAN_IT_RX_FIFO1_NEW_MESSAGE;
ActiveITs |= FDCAN_IT_RX_FIFO0_MESSAGE_LOST | FDCAN_IT_RX_FIFO1_MESSAGE_LOST;
ActiveITs |= FDCAN_IT_RX_FIFO0_FULL | FDCAN_IT_RX_FIFO1_FULL;
HAL_FDCAN_ActivateNotification(&can_obj->can, ActiveITs, 0);
return true;
}
void can_deinit(pyb_can_obj_t *self) {
self->is_enabled = false;
HAL_FDCAN_DeInit(&self->can);
if (self->can.Instance == FDCAN1) {
HAL_NVIC_DisableIRQ(FDCAN1_IT0_IRQn);
HAL_NVIC_DisableIRQ(FDCAN1_IT1_IRQn);
// TODO check if FDCAN2 is used.
__HAL_RCC_FDCAN_FORCE_RESET();
__HAL_RCC_FDCAN_RELEASE_RESET();
__HAL_RCC_FDCAN_CLK_DISABLE();
#if defined(MICROPY_HW_CAN2_TX)
} else if (self->can.Instance == FDCAN2) {
HAL_NVIC_DisableIRQ(FDCAN2_IT0_IRQn);
HAL_NVIC_DisableIRQ(FDCAN2_IT1_IRQn);
// TODO check if FDCAN2 is used.
__HAL_RCC_FDCAN_FORCE_RESET();
__HAL_RCC_FDCAN_RELEASE_RESET();
__HAL_RCC_FDCAN_CLK_DISABLE();
#endif
}
}
void can_clearfilter(pyb_can_obj_t *self, uint32_t f, uint8_t extid) {
if (self && self->can.Instance) {
FDCAN_FilterTypeDef filter = {0};
if (extid == 1) {
filter.IdType = FDCAN_EXTENDED_ID;
} else {
filter.IdType = FDCAN_STANDARD_ID;
}
filter.FilterIndex = f;
filter.FilterConfig = FDCAN_FILTER_DISABLE;
HAL_FDCAN_ConfigFilter(&self->can, &filter);
}
}
int can_receive(FDCAN_HandleTypeDef *can, int fifo, FDCAN_RxHeaderTypeDef *hdr, uint8_t *data, uint32_t timeout_ms) {
volatile uint32_t *rxf, *rxa;
uint32_t fl;
if (fifo == FDCAN_RX_FIFO0) {
rxf = &can->Instance->RXF0S;
rxa = &can->Instance->RXF0A;
fl = FDCAN_RXF0S_F0FL;
} else {
rxf = &can->Instance->RXF1S;
rxa = &can->Instance->RXF1A;
fl = FDCAN_RXF1S_F1FL;
}
// Wait for a message to become available, with timeout
uint32_t start = HAL_GetTick();
while ((*rxf & fl) == 0) {
if (timeout_ms != HAL_MAX_DELAY) {
if (HAL_GetTick() - start >= timeout_ms) {
return -MP_ETIMEDOUT;
}
}
MICROPY_EVENT_POLL_HOOK
}
// Get pointer to incoming message
uint32_t index, *address;
if (fifo == FDCAN_RX_FIFO0) {
index = (*rxf & FDCAN_RXF0S_F0GI) >> FDCAN_RXF0S_F0GI_Pos;
#if defined(STM32G4)
address = (uint32_t *)(can->msgRam.RxFIFO0SA + (index * (18U * 4U))); // SRAMCAN_RF0_SIZE bytes, size not configurable
#else
address = (uint32_t *)(can->msgRam.RxFIFO0SA + (index * can->Init.RxFifo0ElmtSize * 4));
#endif
} else {
index = (*rxf & FDCAN_RXF1S_F1GI) >> FDCAN_RXF1S_F1GI_Pos;
#if defined(STM32G4)
// ToDo: test FIFO1, FIFO 0 is ok
address = (uint32_t *)(can->msgRam.RxFIFO1SA + (index * (18U * 4U))); // SRAMCAN_RF1_SIZE bytes, size not configurable
#else
address = (uint32_t *)(can->msgRam.RxFIFO1SA + (index * can->Init.RxFifo1ElmtSize * 4));
#endif
}
// Parse header of message
hdr->IdType = *address & FDCAN_ELEMENT_MASK_XTD;
if (hdr->IdType == FDCAN_STANDARD_ID) {
hdr->Identifier = (*address & FDCAN_ELEMENT_MASK_STDID) >> 18;
} else {
hdr->Identifier = *address & FDCAN_ELEMENT_MASK_EXTID;
}
hdr->RxFrameType = *address & FDCAN_ELEMENT_MASK_RTR;
hdr->ErrorStateIndicator = *address++ & FDCAN_ELEMENT_MASK_ESI;
hdr->RxTimestamp = *address & FDCAN_ELEMENT_MASK_TS;
hdr->DataLength = (*address & FDCAN_ELEMENT_MASK_DLC) >> 16;
hdr->BitRateSwitch = *address & FDCAN_ELEMENT_MASK_BRS;
hdr->FDFormat = *address & FDCAN_ELEMENT_MASK_FDF;
hdr->FilterIndex = (*address & FDCAN_ELEMENT_MASK_FIDX) >> 24;
hdr->IsFilterMatchingFrame = (*address++ & FDCAN_ELEMENT_MASK_ANMF) >> 31;
// Convert DLC to Bytes.
hdr->DataLength = DLCtoBytes[hdr->DataLength];
// Copy data
uint8_t *pdata = (uint8_t *)address;
for (uint32_t i = 0; i < hdr->DataLength; ++i) {
*data++ = *pdata++;
}
// Release (free) message from FIFO
*rxa = index;
return 0; // success
}
STATIC void can_rx_irq_handler(uint can_id, uint fifo_id) {
mp_obj_t callback;
pyb_can_obj_t *self;
mp_obj_t irq_reason = MP_OBJ_NEW_SMALL_INT(0);
byte *state;
self = MP_STATE_PORT(pyb_can_obj_all)[can_id - 1];
CAN_TypeDef *can = self->can.Instance;
uint32_t RxFifo0ITs;
uint32_t RxFifo1ITs;
// uint32_t Errors;
uint32_t ErrorStatusITs;
uint32_t Psr;
RxFifo0ITs = can->IR & FDCAN_RX_FIFO0_MASK;
RxFifo0ITs &= can->IE;
RxFifo1ITs = can->IR & FDCAN_RX_FIFO1_MASK;
RxFifo1ITs &= can->IE;
// Errors = (&self->can)->Instance->IR & FDCAN_ERROR_MASK;
// Errors &= (&self->can)->Instance->IE;
ErrorStatusITs = can->IR & FDCAN_ERROR_STATUS_MASK;
ErrorStatusITs &= can->IE;
Psr = can->PSR;
if (fifo_id == FDCAN_RX_FIFO0) {
callback = self->rxcallback0;
state = &self->rx_state0;
if (RxFifo0ITs & FDCAN_FLAG_RX_FIFO0_NEW_MESSAGE) {
__HAL_FDCAN_DISABLE_IT(&self->can, FDCAN_IT_RX_FIFO0_NEW_MESSAGE);
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_RX_FIFO0_NEW_MESSAGE);
irq_reason = MP_OBJ_NEW_SMALL_INT(0);
*state = RX_STATE_MESSAGE_PENDING;
}
if (RxFifo0ITs & FDCAN_FLAG_RX_FIFO0_FULL) {
__HAL_FDCAN_DISABLE_IT(&self->can, FDCAN_IT_RX_FIFO0_FULL);
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_RX_FIFO0_FULL);
irq_reason = MP_OBJ_NEW_SMALL_INT(1);
*state = RX_STATE_FIFO_FULL;
}
if (RxFifo0ITs & FDCAN_FLAG_RX_FIFO0_MESSAGE_LOST) {
__HAL_FDCAN_DISABLE_IT(&self->can, FDCAN_IT_RX_FIFO0_MESSAGE_LOST);
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_RX_FIFO0_MESSAGE_LOST);
irq_reason = MP_OBJ_NEW_SMALL_INT(2);
*state = RX_STATE_FIFO_OVERFLOW;
}
} else {
callback = self->rxcallback1;
state = &self->rx_state1;
if (RxFifo1ITs & FDCAN_FLAG_RX_FIFO1_NEW_MESSAGE) {
__HAL_FDCAN_DISABLE_IT(&self->can, FDCAN_IT_RX_FIFO1_NEW_MESSAGE);
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_RX_FIFO1_NEW_MESSAGE);
irq_reason = MP_OBJ_NEW_SMALL_INT(0);
*state = RX_STATE_MESSAGE_PENDING;
}
if (RxFifo1ITs & FDCAN_FLAG_RX_FIFO1_FULL) {
__HAL_FDCAN_DISABLE_IT(&self->can, FDCAN_IT_RX_FIFO1_FULL);
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_RX_FIFO1_FULL);
irq_reason = MP_OBJ_NEW_SMALL_INT(1);
*state = RX_STATE_FIFO_FULL;
}
if (RxFifo1ITs & FDCAN_FLAG_RX_FIFO1_MESSAGE_LOST) {
__HAL_FDCAN_DISABLE_IT(&self->can, FDCAN_IT_RX_FIFO1_MESSAGE_LOST);
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_RX_FIFO1_MESSAGE_LOST);
irq_reason = MP_OBJ_NEW_SMALL_INT(2);
*state = RX_STATE_FIFO_OVERFLOW;
}
}
if (ErrorStatusITs & FDCAN_FLAG_ERROR_WARNING) {
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_ERROR_WARNING);
if (Psr & FDCAN_PSR_EW) {
irq_reason = MP_OBJ_NEW_SMALL_INT(3);
// mp_printf(MICROPY_ERROR_PRINTER, "clear warning %08x\n", (can->IR & FDCAN_ERROR_STATUS_MASK));
}
}
if (ErrorStatusITs & FDCAN_FLAG_ERROR_PASSIVE) {
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_ERROR_PASSIVE);
if (Psr & FDCAN_PSR_EP) {
irq_reason = MP_OBJ_NEW_SMALL_INT(4);
// mp_printf(MICROPY_ERROR_PRINTER, "clear passive %08x\n", (can->IR & FDCAN_ERROR_STATUS_MASK));
}
}
if (ErrorStatusITs & FDCAN_FLAG_BUS_OFF) {
__HAL_FDCAN_CLEAR_FLAG(&self->can, FDCAN_FLAG_BUS_OFF);
if (Psr & FDCAN_PSR_BO) {
irq_reason = MP_OBJ_NEW_SMALL_INT(5);
// mp_printf(MICROPY_ERROR_PRINTER, "bus off %08x\n", (can->IR & FDCAN_ERROR_STATUS_MASK));
}
}
pyb_can_handle_callback(self, fifo_id, callback, irq_reason);
// mp_printf(MICROPY_ERROR_PRINTER, "Ints: %08x, %08x, %08x\n", RxFifo0ITs, RxFifo1ITs, ErrorStatusITs);
}
#if defined(MICROPY_HW_CAN1_TX)
void FDCAN1_IT0_IRQHandler(void) {
IRQ_ENTER(FDCAN1_IT0_IRQn);
can_rx_irq_handler(PYB_CAN_1, FDCAN_RX_FIFO0);
IRQ_EXIT(FDCAN1_IT0_IRQn);
}
void FDCAN1_IT1_IRQHandler(void) {
IRQ_ENTER(FDCAN1_IT1_IRQn);
can_rx_irq_handler(PYB_CAN_1, FDCAN_RX_FIFO1);
IRQ_EXIT(FDCAN1_IT1_IRQn);
}
#endif
#if defined(MICROPY_HW_CAN2_TX)
void FDCAN2_IT0_IRQHandler(void) {
IRQ_ENTER(FDCAN2_IT0_IRQn);
can_rx_irq_handler(PYB_CAN_2, FDCAN_RX_FIFO0);
IRQ_EXIT(FDCAN2_IT0_IRQn);
}
void FDCAN2_IT1_IRQHandler(void) {
IRQ_ENTER(FDCAN2_IT1_IRQn);
can_rx_irq_handler(PYB_CAN_2, FDCAN_RX_FIFO1);
IRQ_EXIT(FDCAN2_IT1_IRQn);
}
#endif
#endif // MICROPY_HW_ENABLE_CAN && MICROPY_HW_ENABLE_FDCAN