forked from ufal/whisper_streaming
-
Notifications
You must be signed in to change notification settings - Fork 3
/
whisper_online.py
697 lines (551 loc) · 28.3 KB
/
whisper_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
#!/usr/bin/env python3
import sys
import numpy as np
import librosa
from functools import lru_cache
import time
from colorama import Fore, Back, Style
import colorama
from cuda_check import *
@lru_cache
def load_audio(fname):
a, _ = librosa.load(fname, sr=16000)
return a
def load_audio_chunk(fname, beg, end):
audio = load_audio(fname)
beg_s = int(beg*16000)
end_s = int(end*16000)
return audio[beg_s:end_s]
# Whisper backend
class ASRBase:
sep = " " # join transcribe words with this character (" " for whisper_timestamped,
# "" for faster-whisper because it emits the spaces when neeeded)
def __init__(self, lan, modelsize=None, cache_dir=None, model_dir=None, logfile=sys.stderr):
self.logfile = logfile
self.transcribe_kargs = {}
self.original_language = lan
self.model = self.load_model(modelsize, cache_dir, model_dir)
def load_model(self, modelsize, cache_dir):
raise NotImplemented("must be implemented in the child class")
def transcribe(self, audio, init_prompt=""):
raise NotImplemented("must be implemented in the child class")
def use_vad(self):
raise NotImplemented("must be implemented in the child class")
class WhisperTimestampedASR(ASRBase):
"""Uses whisper_timestamped library as the backend. Initially, we tested the code on this backend. It worked, but slower than faster-whisper.
On the other hand, the installation for GPU could be easier.
"""
sep = " "
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
import whisper
from whisper_timestamped import transcribe_timestamped
self.transcribe_timestamped = transcribe_timestamped
if model_dir is not None:
print("ignoring model_dir, not implemented",file=self.logfile)
return whisper.load_model(modelsize, download_root=cache_dir)
def transcribe(self, audio, init_prompt=""):
result = self.transcribe_timestamped(self.model,
audio, language=self.original_language,
initial_prompt=init_prompt, verbose=None,
condition_on_previous_text=True, **self.transcribe_kargs)
return result
def ts_words(self,r):
# return: transcribe result object to [(beg,end,"word1"), ...]
o = []
for s in r["segments"]:
for w in s["words"]:
t = (w["start"],w["end"],w["text"])
o.append(t)
return o
def segments_end_ts(self, res):
return [s["end"] for s in res["segments"]]
def use_vad(self):
self.transcribe_kargs["vad"] = True
def set_translate_task(self):
self.transcribe_kargs["task"] = "translate"
class FasterWhisperASR(ASRBase):
"""Uses faster-whisper library as the backend. Works much faster, appx 4-times (in offline mode). For GPU, it requires installation with a specific CUDNN version.
"""
sep = ""
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
from faster_whisper import WhisperModel
if model_dir is not None:
print(f"{Fore.BLUE}Loading whisper model from model_dir {model_dir}. modelsize and cache_dir parameters are not used.{Style.RESET_ALL}",file=sys.stderr)
model_size_or_path = model_dir
elif modelsize is not None:
model_size_or_path = modelsize
else:
raise ValueError("modelsize or model_dir parameter must be set")
info = CUDAInfo()
# this worked fast and reliably on NVIDIA L40
model = WhisperModel(model_size_or_path, device="cuda", compute_type="float16" if info.compute_capability_major>=7 else "float32", download_root=cache_dir)
# or run on GPU with INT8
# tested: the transcripts were different, probably worse than with FP16, and it was slightly (appx 20%) slower
#model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# or run on CPU with INT8
# tested: works, but slow, appx 10-times than cuda FP16
# model = WhisperModel(modelsize, device="cpu", compute_type="int8") #, download_root="faster-disk-cache-dir/")
return model
def transcribe(self, audio, init_prompt=""):
# tested: beam_size=5 is faster and better than 1 (on one 200 second document from En ESIC, min chunk 0.01)
segments, info = self.model.transcribe(audio, language=self.original_language, initial_prompt=init_prompt, beam_size=5, word_timestamps=True, condition_on_previous_text=True, **self.transcribe_kargs)
return list(segments)
def ts_words(self, segments):
o = []
for segment in segments:
for word in segment.words:
# not stripping the spaces -- should not be merged with them!
w = word.word
t = (word.start, word.end, w)
o.append(t)
return o
def segments_end_ts(self, res):
return [s.end for s in res]
def use_vad(self):
self.transcribe_kargs["vad_filter"] = True
def set_translate_task(self):
self.transcribe_kargs["task"] = "translate"
#pip install git+https://github.com/huggingface/transformers.git openai-whisper torch accelerate optimum
# ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
# faster-whisper 0.9.0 requires tokenizers<0.15,>=0.13, but you have tokenizers 0.15.0 which is incompatible.
# pip install --upgrade faster-whisper
#pip install flash-attn --no-build-isolation
class WhisperPipelineASR(ASRBase):
sep = ""
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
import torch
from transformers import pipeline
info = CUDAInfo()
# Initialize the ASR pipeline
pipe = pipeline("automatic-speech-recognition",
model=modelsize,
device="cuda:0",
torch_dtype=torch.float16 if info.compute_capability_major>=7 else torch.float32,
model_kwargs={"use_flash_attention_2": info.compute_capability_major>=8})
if info.compute_capability_major==7 or info.compute_capability_major==6:
pipe.model = pipe.model.to_bettertransformer()
if self.original_language:
self.transcribe_kargs["language"]=self.original_language
return pipe
def transcribe(self, audio, init_prompt=""):
outputs = self.model(audio, chunk_length_s=30, batch_size=1, generate_kwargs=self.transcribe_kargs, return_timestamps="word") #for Word-level timestamps batch-size must be 1. https://huggingface.co/openai/whisper-large-v3/discussions/12
#{'text': ' So as you guys...', 'chunks': [{'text': ' So', 'timestamp': (0.0, 0.64)}, {'text': ' as', 'timestamp': (0.64, 1.02)},...]}
segments = outputs['chunks']
prev = 0.0
def valid_sec(seconds):
if not(isinstance(seconds, int) or isinstance(seconds, float)):
seconds = prev
else:
prev = seconds
return seconds
for segment in segments:
segment['timestamp']=(valid_sec(segment['timestamp'][0]),valid_sec(segment['timestamp'][1]))
return segments
def ts_words(self, segments):
o = []
for segment in segments:
t = (segment['timestamp'][0], segment['timestamp'][1], segment['text'])
o.append(t)
return o
def segments_end_ts(self, res):
return [s['timestamp'][1] for s in res]
def use_vad(self):
#Not implemented yet
return None
def set_translate_task(self):
self.transcribe_kargs["task"] = "translate"
class HypothesisBuffer:
def __init__(self, logfile=sys.stderr):
self.commited_in_buffer = []
self.buffer = []
self.new = []
self.last_commited_time = 0
self.last_commited_word = None
self.logfile = logfile
def insert(self, new, offset):
# compare self.commited_in_buffer and new. It inserts only the words in new that extend the commited_in_buffer, it means they are roughly behind last_commited_time and new in content
# the new tail is added to self.new
new = [(a+offset,b+offset,t) for a,b,t in new]
self.new = [(a,b,t) for a,b,t in new if a > self.last_commited_time-0.1]
if len(self.new) >= 1:
a,b,t = self.new[0]
if abs(a - self.last_commited_time) < 1:
if self.commited_in_buffer:
# it's going to search for 1, 2, ..., 5 consecutive words (n-grams) that are identical in commited and new. If they are, they're dropped.
cn = len(self.commited_in_buffer)
nn = len(self.new)
for i in range(1,min(min(cn,nn),5)+1): # 5 is the maximum
c = " ".join([self.commited_in_buffer[-j][2] for j in range(1,i+1)][::-1])
tail = " ".join(self.new[j-1][2] for j in range(1,i+1))
if c == tail:
print(f"\t\t{Fore.BLUE}removing last",i,f"words:{Style.RESET_ALL}",file=self.logfile)
for j in range(i):
print(f"\t\t{Fore.BLUE}{self.new.pop(0)}{Style.RESET_ALL}",file=self.logfile)
break
def flush(self):
# returns commited chunk = the longest common prefix of 2 last inserts.
commit = []
while self.new:
na, nb, nt = self.new[0]
if len(self.buffer) == 0:
break
if nt == self.buffer[0][2]:
commit.append((na,nb,nt))
self.last_commited_word = nt
self.last_commited_time = nb
self.buffer.pop(0)
self.new.pop(0)
else:
break
self.buffer = self.new
self.new = []
self.commited_in_buffer.extend(commit)
return commit
def pop_commited(self, time):
while self.commited_in_buffer and self.commited_in_buffer[0][1] <= time:
self.commited_in_buffer.pop(0)
def complete(self):
return self.buffer
class OnlineASRProcessor:
SAMPLING_RATE = 16000
def __init__(self, asr, tokenizer=None, buffer_trimming=("segment", 15), logfile=sys.stderr):
"""asr: WhisperASR object
tokenizer: sentence tokenizer object for the target language. Must have a method *split* that behaves like the one of MosesTokenizer. It can be None, if "segment" buffer trimming option is used, then tokenizer is not used at all.
("segment", 15)
buffer_trimming: a pair of (option, seconds), where option is either "sentence" or "segment", and seconds is a number. Buffer is trimmed if it is longer than "seconds" threshold. Default is the most recommended option.
logfile: where to store the log.
"""
self.asr = asr
self.tokenizer = tokenizer
self.logfile = logfile
self.init()
colorama.init()
self.buffer_trimming_way, self.buffer_trimming_sec = buffer_trimming
def init(self):
"""run this when starting or restarting processing"""
self.audio_buffer = np.array([],dtype=np.float32)
self.buffer_time_offset = 0
self.transcript_buffer = HypothesisBuffer(logfile=self.logfile)
self.commited = []
self.chunked_commited = []
self.last_chunked_at = 0
self.silence_iters = 0
def insert_audio_chunk(self, audio):
self.audio_buffer = np.append(self.audio_buffer, audio)
def prompt(self):
"""Returns a tuple: (prompt, context), where "prompt" is a 200-character suffix of commited text that is inside of the scrolled away part of audio buffer.
"context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons.
"""
#k = max(0,len(self.commited)-1)
#while k > 0 and self.commited[k-1][1] > self.last_chunked_at:
# k -= 1
#p = self.commited[:k]
p = self.chunked_commited
p = [t for _,_,t in p]
prompt = []
l = 0
while p and l < 200: # 200 characters prompt size
x = p.pop(-1)
l += len(x)+1
prompt.append(x)
#non_prompt = self.commited[k:]
non_prompt = self.commited
while len(self.chunked_commited)>200:#enough for making 200-char prompt
self.chunked_commited.pop(0)
return self.asr.sep.join(prompt[::-1]), self.asr.sep.join(t for _,_,t in non_prompt)
def process_iter(self):
"""Runs on the current audio buffer.
Returns: a tuple (beg_timestamp, end_timestamp, "text"), or (None, None, "").
The non-emty text is confirmed (committed) partial transcript.
"""
prompt, non_prompt = self.prompt()
print(f"{Fore.BLUE}PROMPT: {prompt}{Style.RESET_ALL}", file=self.logfile)
#print("CONTEXT:", non_prompt, file=self.logfile)
print(f"{Fore.BLUE}transcribing {Back.YELLOW}{len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}s{Back.RESET} from {self.buffer_time_offset:2.2f}{Style.RESET_ALL}",file=self.logfile)
tt = time.time()
res = self.asr.transcribe(self.audio_buffer, init_prompt=prompt)
# transform to [(beg,end,"word1"), ...]
tsw = self.asr.ts_words(res)
tt = time.time() - tt
sr = tt/(len(self.audio_buffer)/self.SAMPLING_RATE)
print(f"{Fore.BLUE}{Back.YELLOW}{tt:2.2f}s{Back.WHITE}/dur={sr:2.3f}{Back.RESET} transcribe()→{Fore.YELLOW}transcript_buffer.new{Style.RESET_ALL}", " ".join([w for _, _, w in tsw]),file=self.logfile)
self.transcript_buffer.insert(tsw, self.buffer_time_offset)
o = self.transcript_buffer.flush()
print(f"{Fore.YELLOW}o=transcript_buffer.flush(new vs buffer){Style.RESET_ALL}", " ".join([w for _, _, w in o]),file=self.logfile)
self.commited.extend(o)
#print(">>>>COMPLETE NOW:",self.to_flush(o),file=self.logfile,flush=True)
#print("INCOMPLETE:",self.to_flush(self.transcript_buffer.complete()),file=self.logfile,flush=True)
print(f"{Fore.YELLOW}transcript_buffer.buffer:{Style.RESET_ALL}",self.to_flush(self.transcript_buffer.complete()),file=self.logfile,flush=True)
# there is a newly confirmed text
if o and self.buffer_trimming_way == "sentence": # trim the completed sentences
if len(self.audio_buffer)/self.SAMPLING_RATE > self.buffer_trimming_sec: # longer than this
self.chunk_completed_sentence()
if self.buffer_trimming_way == "segment":
s = self.buffer_trimming_sec # trim the completed segments longer than s,
else:
s = 30 # if the audio buffer is longer than 30s, trim it
if len(self.audio_buffer)/self.SAMPLING_RATE > s:
self.chunk_completed_segment(res)
# alternative: on any word
#l = self.buffer_time_offset + len(self.audio_buffer)/self.SAMPLING_RATE - 10
# let's find commited word that is less
#k = len(self.commited)-1
#while k>0 and self.commited[k][1] > l:
# k -= 1
#t = self.commited[k][1]
print(f"{Fore.BLUE}chunking segment{Style.RESET_ALL}",file=self.logfile)
#self.chunk_at(t)
print(f"{Fore.BLUE}len of buffer now: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}{Style.RESET_ALL}",file=self.logfile)
return self.to_flush(o)
def chunk_completed_sentence(self):
if self.commited == []: return
#print(self.commited,file=self.logfile)
print(f"{Fore.BLUE}\t\tchunk_completed_sentence in commited:",self.asr.sep.join([w for _, _, w in self.commited]),file=self.logfile)
sents = self.words_to_sentences(self.commited)
for s in sents:
print("\t\tSENT:",s,file=self.logfile)
if len(sents) < 2:
return
while len(sents) > 2:
sents.pop(0)
# we will continue with audio processing at this timestamp
chunk_at = sents[-2][1]
print(f"--- sentence chunked at {chunk_at:2.2f}{Style.RESET_ALL}",file=self.logfile)
self.chunk_at(chunk_at)
def chunk_completed_segment(self, res):
if self.commited == []: return
ends = self.asr.segments_end_ts(res)
t = self.commited[-1][1]
if len(ends) > 1:
e = ends[-2]+self.buffer_time_offset
while len(ends) > 2 and e > t:
ends.pop(-1)
e = ends[-2]+self.buffer_time_offset
if e <= t:
print(f"{Fore.BLUE}--- segment chunked at {e:2.2f}{Style.RESET_ALL}",file=self.logfile)
self.chunk_at(e)
else:
print(f"{Fore.BLUE}--- last segment not within commited area{Style.RESET_ALL}",file=self.logfile)
else:
print(f"{Fore.BLUE}--- not enough segments to chunk{Style.RESET_ALL}",file=self.logfile)
def chunk_at(self, time):
"""trims the hypothesis and audio buffer at "time"
"""
self.transcript_buffer.pop_commited(time)
while self.commited and self.commited[0][1] <= time:
self.chunked_commited.append(self.commited.pop(0))
cut_seconds = time - self.buffer_time_offset
self.audio_buffer = self.audio_buffer[int(cut_seconds*self.SAMPLING_RATE):]
self.buffer_time_offset = time
self.last_chunked_at = time
def words_to_sentences(self, words):
"""Uses self.tokenizer for sentence segmentation of words.
Returns: [(beg,end,"sentence 1"),...]
"""
cwords = [w for w in words]
t = " ".join(o[2] for o in cwords)
s = self.tokenizer.split(t)
out = []
while s:
beg = None
end = None
sent = s.pop(0).strip()
fsent = sent
while cwords:
b,e,w = cwords.pop(0)
w = w.strip()
if beg is None and sent.startswith(w):
beg = b
elif end is None and sent == w:
end = e
out.append((beg,end,fsent))
break
sent = sent[len(w):].strip()
return out
def finish(self):
"""Flush the incomplete text when the whole processing ends.
Returns: the same format as self.process_iter()
"""
o = self.transcript_buffer.complete()
f = self.to_flush(o)
print("last, noncommited:",f,file=self.logfile)
return f
def to_flush(self, sents, sep=None, offset=0, ):
# concatenates the timestamped words or sentences into one sequence that is flushed in one line
# sents: [(beg1, end1, "sentence1"), ...] or [] if empty
# return: (beg1,end-of-last-sentence,"concatenation of sentences") or (None, None, "") if empty
if sep is None:
sep = self.asr.sep
t = sep.join(s[2] for s in sents)
if len(sents) == 0:
b = None
e = None
else:
b = offset + sents[0][0]
e = offset + sents[-1][1]
return (b,e,t)
WHISPER_LANG_CODES = "af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,zh".split(",")
def create_tokenizer(lan):
"""returns an object that has split function that works like the one of MosesTokenizer"""
assert lan in WHISPER_LANG_CODES, "language must be Whisper's supported lang code: " + " ".join(WHISPER_LANG_CODES)
if lan == "uk":
import tokenize_uk
class UkrainianTokenizer:
def split(self, text):
return tokenize_uk.tokenize_sents(text)
return UkrainianTokenizer()
# supported by fast-mosestokenizer
if lan in "as bn ca cs de el en es et fi fr ga gu hi hu is it kn lt lv ml mni mr nl or pa pl pt ro ru sk sl sv ta te yue zh".split():
from mosestokenizer import MosesTokenizer
return MosesTokenizer(lan)
# the following languages are in Whisper, but not in wtpsplit:
if lan in "as ba bo br bs fo haw hr ht jw lb ln lo mi nn oc sa sd sn so su sw tk tl tt".split():
print(f"{lan} code is not supported by wtpsplit. Going to use None lang_code option.", file=self.logfile)
lan = None
from wtpsplit import WtP
# downloads the model from huggingface on the first use
wtp = WtP("wtp-canine-s-12l-no-adapters")
class WtPtok:
def split(self, sent):
return wtp.split(sent, lang_code=lan)
return WtPtok()
def add_shared_args(parser):
"""shared args for simulation (this entry point) and server
parser: argparse.ArgumentParser object
"""
parser.add_argument('--min-chunk-size', type=float, default=1.0, help='Minimum audio chunk size in seconds. It waits up to this time to do processing. If the processing takes shorter time, it waits, otherwise it processes the whole segment that was received by this time.')
parser.add_argument('--model', type=str, default='large-v3', choices="tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large-v3-4bit,large".split(","),help="Name size of the Whisper model to use (default: large-v3). The model is automatically downloaded from the model hub if not present in model cache dir.")
parser.add_argument('--model_cache_dir', type=str, default=None, help="Overriding the default model cache dir where models downloaded from the hub are saved")
parser.add_argument('--model_dir', type=str, default=None, help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.")
parser.add_argument('--lan', '--language', type=str, default='en', help="Language code for transcription, e.g. en,de,cs.")
parser.add_argument('--task', type=str, default='transcribe', choices=["transcribe","translate"],help="Transcribe or translate.")
parser.add_argument('--backend', type=str, default="faster-whisper", choices=["hf-pipeline","faster-whisper", "whisper_timestamped", "mlx-whisper"],help='Load only this backend for Whisper processing.')
parser.add_argument('--vad', action="store_true", default=False, help='Use VAD = voice activity detection, with the default parameters.')
parser.add_argument('--buffer_trimming', type=str, default="sentence", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.')
parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.')
## main:
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('audio_path', type=str, help="Filename of 16kHz mono channel wav, on which live streaming is simulated.")
add_shared_args(parser)
parser.add_argument('--start_at', type=float, default=0.0, help='Start processing audio at this time.')
parser.add_argument('--offline', action="store_true", default=False, help='Offline mode.')
parser.add_argument('--comp_unaware', action="store_true", default=False, help='Computationally unaware simulation.')
args = parser.parse_args()
# reset to store stderr to different file stream, e.g. open(os.devnull,"w")
logfile = sys.stderr
if args.offline and args.comp_unaware:
print("No or one option from --offline and --comp_unaware are available, not both. Exiting.",file=logfile)
sys.exit(1)
audio_path = args.audio_path
SAMPLING_RATE = 16000
duration = len(load_audio(audio_path))/SAMPLING_RATE
print("Audio duration is: %2.2f seconds" % duration, file=logfile)
size = args.model
language = args.lan
t = time.time()
print(f"Loading Whisper {size} model for {language}...",file=logfile,end=" ",flush=True)
if args.backend == "faster-whisper":
asr_cls = FasterWhisperASR
elif args.backend == "hf-pipeline":
size = "openai/whisper-"+size
asr_cls = WhisperPipelineASR
elif args.backend == "mlx-whisper":
from mlx_whisper import MLXWhisperASR
asr_cls = MLXWhisperASR
else:
asr_cls = WhisperTimestampedASR
asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
if args.task == "translate":
asr.set_translate_task()
tgt_language = "en" # Whisper translates into English
else:
tgt_language = language # Whisper transcribes in this language
e = time.time()
print(f"done. It took {round(e-t,2)} seconds.",file=logfile)
if args.vad:
print("setting VAD filter",file=logfile)
asr.use_vad()
min_chunk = args.min_chunk_size
if args.buffer_trimming == "sentence":
tokenizer = create_tokenizer(tgt_language)
else:
tokenizer = None
online = OnlineASRProcessor(asr,tokenizer,logfile=logfile,buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec))
# load the audio into the LRU cache before we start the timer
a = load_audio_chunk(audio_path,0,1)
# warm up the ASR, because the very first transcribe takes much more time than the other
asr.transcribe(a)
beg = args.start_at
start = time.time()-beg
def output_transcript(o, now=None):
# output format in stdout is like:
# 4186.3606 0 1720 Takhle to je
# - the first three words are:
# - emission time from beginning of processing, in milliseconds
# - beg and end timestamp of the text segment, as estimated by Whisper model. The timestamps are not accurate, but they're useful anyway
# - the next words: segment transcript
if now is None:
now = time.time()-start
if o[0] is not None:
print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),file=logfile,flush=True)
print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),flush=True)
else:
print(o,file=logfile,flush=True)
if args.offline: ## offline mode processing (for testing/debugging)
a = load_audio(audio_path)
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError:
print("assertion error",file=logfile)
pass
else:
output_transcript(o)
now = None
elif args.comp_unaware: # computational unaware mode
end = beg + min_chunk
while True:
a = load_audio_chunk(audio_path,beg,end)
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError:
print("assertion error",file=logfile)
pass
else:
output_transcript(o, now=end)
print(f"## last processed {end:.2f}s",file=logfile,flush=True)
if end >= duration:
break
beg = end
if end + min_chunk > duration:
end = duration
else:
end += min_chunk
now = duration
else: # online = simultaneous mode
end = 0
while True:
now = time.time() - start
if now < end+min_chunk:
time.sleep(min_chunk+end-now)
end = time.time() - start
a = load_audio_chunk(audio_path,beg,end)
beg = end
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError:
print("assertion error",file=logfile)
pass
else:
output_transcript(o)
now = time.time() - start
print(f"## last processed {end:.2f} s, now is {now:.2f}, the latency is {now-end:.2f}",file=logfile,flush=True)
if end >= duration:
break
now = None
o = online.finish()
output_transcript(o, now=now)