|
| 1 | +import numpy as np |
| 2 | +from scipy.spatial.distance import cdist |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +from sklearn.cluster import DBSCAN |
| 5 | + |
| 6 | + |
| 7 | +class cDBSCAN(object): |
| 8 | + def __init__(self, min_pts=5, epsilon=0.5, metric='euclidean'): |
| 9 | + self.min_pts = min_pts |
| 10 | + self.epsilon = epsilon |
| 11 | + self.metric = metric |
| 12 | + |
| 13 | + def fit(self, X, y=None): |
| 14 | + self.fit_predict(X, y) |
| 15 | + return self |
| 16 | + |
| 17 | + def predict(self, X): |
| 18 | + pass |
| 19 | + |
| 20 | + def fit_predict(self, X, y=None): |
| 21 | + n_samples, _ = X.shape |
| 22 | + nearin = cdist(X, X, metric=self.metric) <= self.epsilon |
| 23 | + near_num = np.sum(nearin, axis=1) |
| 24 | + core_ind = set(np.arange(n_samples)[near_num >= self.min_pts]) |
| 25 | + print(core_ind) |
| 26 | + |
| 27 | + n_clusters = 0 |
| 28 | + this_set = set(range(n_samples)) |
| 29 | + clusters = [] |
| 30 | + |
| 31 | + while core_ind: |
| 32 | + old_set = this_set.copy() |
| 33 | + ele = core_ind.pop() |
| 34 | + queue = [ele] |
| 35 | + this_set.remove(ele) |
| 36 | + while queue: |
| 37 | + q = queue.pop(0) |
| 38 | + if near_num[q] >= self.min_pts: |
| 39 | + dlt = this_set.intersection(np.arange(n_samples)[nearin[q]]) |
| 40 | + queue.extend(dlt) |
| 41 | + this_set.difference_update(dlt) |
| 42 | + n_clusters += 1 |
| 43 | + C = old_set.difference(this_set) |
| 44 | + clusters.append(C) |
| 45 | + core_ind.difference_update(C) |
| 46 | + labels = -1 * np.ones(n_samples, dtype=int) |
| 47 | + |
| 48 | + for l, g in enumerate(clusters): |
| 49 | + labels[list(g)] = l |
| 50 | + self.labels = labels |
| 51 | + return labels |
| 52 | + |
| 53 | +if __name__ == "__main__": |
| 54 | + np.random.seed(23) |
| 55 | + X = np.random.random((40, 2)) |
| 56 | + cdb = cDBSCAN(epsilon=0.2) |
| 57 | + res = cdb.fit_predict(X) |
| 58 | + print(res) |
| 59 | + db = DBSCAN(eps=0.2) |
| 60 | + l = db.fit_predict(X) |
| 61 | + print(l) |
| 62 | + |
| 63 | + fig, (a1, a2) = plt.subplots(1, 2) |
| 64 | + |
| 65 | + a1.scatter(X[:, 0], X[:, 1], c=res) |
| 66 | + a2.scatter(X[:, 0], X[:, 1], c=l) |
| 67 | + plt.show() |
0 commit comments