-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtemplate_for_sklearn.py
177 lines (142 loc) · 6.04 KB
/
template_for_sklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
## based on Titanic dataset
## data analysis and wrangling
import pandas as pd
import numpy as np
import random as rnd
## visualization
#import seaborn as sns
#import matplotlib.pyplot as plt
# %matplotlib inline
## machine learning
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.mixture import BayesianGaussianMixture
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import OneHotEncoder
from sklearn.metrics import classification_report
import lightgbm as lgb
## data input
train_df = pd.read_csv('input/train.csv')
test_df = pd.read_csv('input/test.csv')
## preprocessing
## drop unnecessary columns
train_df = train_df.drop(['Ticket', 'Cabin'], axis=1)
test_df = test_df.drop(['Ticket', 'Cabin'], axis=1)
combine = [train_df, test_df]
for dataset in combine:
# regex
dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\.', expand=False)
for dataset in combine:
dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
## mapping-categorical label
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}
for dataset in combine:
dataset['Title'] = dataset['Title'].map(title_mapping)
dataset['Title'] = dataset['Title'].fillna(0)
train_df = train_df.drop(['Name', 'PassengerId'], axis=1)
test_df = test_df.drop(['Name'], axis=1)
combine = [train_df, test_df]
for dataset in combine:
dataset['Sex'] = dataset['Sex'].map( {'female': 1, 'male': 0} ).astype(int)
guess_ages = np.zeros((2,3))
for dataset in combine:
for i in range(0, 2):
for j in range(0, 3):
guess_df = dataset[(dataset['Sex'] == i) & \
(dataset['Pclass'] == j+1)]['Age'].dropna()
# age_mean = guess_df.mean()
# age_std = guess_df.std()
# age_guess = rnd.uniform(age_mean - age_std, age_mean + age_std)
age_guess = guess_df.median()
# Convert random age float to nearest .5 age
guess_ages[i,j] = int( age_guess/0.5 + 0.5 ) * 0.5
for i in range(0, 2):
for j in range(0, 3):
dataset.loc[ (dataset.Age.isnull()) & (dataset.Sex == i) & (dataset.Pclass == j+1),\
'Age'] = guess_ages[i,j]
dataset['Age'] = dataset['Age'].astype(int)
_, bins = pd.cut(train_df['Age'], 5, retbins=True)
## bin cutoff
for dataset in combine:
# dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0
# dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1
# dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2
# dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3
# dataset.loc[ dataset['Age'] > 64, 'Age'] = 4
dataset['Age'] = pd.cut(dataset['Age'],bins, labels=range(5))
combine = [train_df, test_df]
for dataset in combine:
dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1
for dataset in combine:
dataset['IsAlone'] = 0
dataset.loc[dataset['FamilySize'] <= 1, 'IsAlone'] = 1
train_df = train_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
test_df = test_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
combine = [train_df, test_df]
for dataset in combine:
dataset['Age*Class'] = dataset.Age * dataset.Pclass
dataset['Age*Class'] = dataset['Age*Class'].astype(int)
freq_port = train_df.Embarked.dropna().mode()[0]
for dataset in combine:
dataset['Embarked'] = dataset['Embarked'].fillna(freq_port)
dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int)
test_df['Fare'].fillna(test_df['Fare'].dropna().median(), inplace=True)
_, bins = pd.qcut(train_df['Fare'], 5, retbins=True)
bins[0] -=0.01
bins[-1] += 0.01
for dataset in combine:
# dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0
# dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1
# dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2
# dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3
# dataset['Fare'] = dataset['Fare'].astype(int)
dataset['Fare'] = pd.cut(dataset['Fare'], bins, labels=range(5)).astype(int)
combine = [train_df, test_df]
## oversample not necessary for all cases
train_df = train_df.sample(n=5*train_df.shape[0], replace=True, random_state = 42)
X_Train = train_df.drop("Survived", axis=1)
Y_Train = train_df["Survived"]
X_pred = test_df.drop("PassengerId", axis=1).copy()
## OneHotEncoder
enc = OneHotEncoder()
enc.fit(X_Train)
X_Train = enc.transform(X_Train)
X_Pred = enc.transform(X_pred)
## Train/test split
X_train, X_test, y_train, y_test = train_test_split(X_Train,Y_Train, test_size=0.2, random_state=42)
## estimator selection
estimator = RandomForestClassifier()
estimator.fit(X_train, y_train)
estimator.score(X_train, y_train)
estimator2 = BayesianGaussianMixture(n_components=2)
param_grid2 = {
'weight_concentration_prior_type':['dirichlet_process', 'dirichlet_distribution'],
'covariance_type' : ['full', 'tied', 'diag', 'spherical'],
}
## parameter tuning
param_grid = {
'n_estimators': [130,180,200],
'criterion':['gini', 'entropy' ]
}
# estimator = lgb.LGBMClassifier(reg_alpha=0.01, reg_lambda=0.01)
# gbm = GridSearchCV(estimator, param_grid,cv=10)
gbm = GridSearchCV(estimator2, param_grid2,cv=10)
gbm.fit(X_train.toarray(), y_train)
print gbm.best_params_
print gbm.score(X_train.toarray(), y_train)
## prediction
pred = gbm.predict(X_Pred.toarray())
## classification_report
y_true, y_pred = y_test, gbm.predict(X_test.toarray())
print classification_report(y_true, y_pred)
## submission
submission = pd.DataFrame({
"PassengerId": test_df["PassengerId"],
"Survived": pred
})
submission.to_csv('submission.csv', index=False)