-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOMP.py
35 lines (29 loc) · 808 Bytes
/
OMP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
from copy import deepcopy
import pandas as pd
def OMP(ft, D, tol=1e-4, K=20):
R = deepcopy(ft)
gamma = []
D = D / np.linalg.norm(D, axis=0)
t = 1
while t < K:
gammai = np.argmax(np.abs(np.dot(R, D)))
gamma.append(gammai)
fi = D[:, gamma]
x = np.dot(np.linalg.pinv(fi), ft)
R = ft - np.dot(fi, x)
if np.dot(R, R) < tol:
break
t += 1
x = np.asarray(x)
gamma = np.asarray(gamma)
return x, gamma
if __name__ == "__main__":
v = np.random.random(8)
print('The original: ', v)
# D = np.random.random((8, 12))
D = np.random.randn(8, 12)
a, gamma = OMP(v, D)
D /= np.linalg.norm(D, axis=0)
vn = np.sum(a * D[:, gamma], axis=1)
print('The approximation: ', vn)