-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathStylenet.py
247 lines (173 loc) · 7.04 KB
/
Stylenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# coding: utf-8
# In[1]:
import os
import scipy.misc
import scipy.io
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()
# In[2]:
sess = tf.Session()
# In[26]:
original_image_file = '/Users/shouzeluo/Downloads/book_cover.jpg'
style_image_file = '/Users/shouzeluo/Downloads/starry_night.jpg'
vgg_path = '/Users/shouzeluo/Downloads/imagenet-vgg-verydeep-19.mat'
original_image_weight = 5.0
style_image_weight = 500.0
regularization_weight = 100
learning_rate = 0.001
generations = 5000
output_generations = 250
beta1 = 0.9 # For the Adam optimizer
beta2 = 0.999 # For the Adam optimizer
# In[4]:
original_image = scipy.misc.imread(original_image_file)
style_image = scipy.misc.imread(style_image_file)
style_image = scipy.misc.imresize(style_image, float(original_image.shape[1]) / style_image.shape[1])
# In[5]:
# VGG-19 Layer Setup
# From paper
vgg_layers = ['conv1_1', 'relu1_1',
'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1',
'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1',
'conv3_2', 'relu3_2',
'conv3_3', 'relu3_3',
'conv3_4', 'relu3_4', 'pool3',
'conv4_1', 'relu4_1',
'conv4_2', 'relu4_2',
'conv4_3', 'relu4_3',
'conv4_4', 'relu4_4', 'pool4',
'conv5_1', 'relu5_1',
'conv5_2', 'relu5_2',
'conv5_3', 'relu5_3',
'conv5_4', 'relu5_4']
# In[6]:
def extract_net_info(path_to_params):
vgg_data = scipy.io.loadmat(path_to_params)
normalization_matrix = vgg_data['normalization'][0][0][0]
mat_mean = np.mean(normalization_matrix, axis=(0,1))
network_weights = vgg_data['layers'][0]
return(mat_mean, network_weights)
# In[7]:
def vgg_network(network_weights, init_image):
network = {}
image = init_image
for i, layer in enumerate(vgg_layers):
if layer[0] == 'c':
weights, bias = network_weights[i][0][0][0][0]
weights = np.transpose(weights, (1, 0, 2, 3))
bias = bias.reshape(-1)
conv_layer = tf.nn.conv2d(image, tf.constant(weights), (1, 1, 1, 1), 'SAME')
image = tf.nn.bias_add(conv_layer, bias)
elif layer[0] == 'r':
image = tf.nn.relu(image)
else:
image = tf.nn.max_pool(image, (1, 2, 2, 1), (1, 2, 2, 1), 'SAME')
network[layer] = image
return(network)
# In[8]:
original_layer = 'relu4_2'
style_layers = ['relu1_1', 'relu2_1', 'relu3_1', 'relu4_1', 'relu5_1']
# In[9]:
normalization_mean, network_weights = extract_net_info(vgg_path)
shape = (1,) + original_image.shape
style_shape = (1,) + style_image.shape
original_features = {}
style_features = {}
# In[10]:
image = tf.placeholder('float', shape=shape)
vgg_net = vgg_network(network_weights, image)
# In[11]:
original_minus_mean = original_image - normalization_mean
original_norm = np.array([original_minus_mean])
original_features[original_layer] = sess.run(vgg_net[original_layer], feed_dict={image: original_norm})
# In[12]:
image = tf.placeholder('float', shape=style_shape)
vgg_net = vgg_network(network_weights, image)
style_minus_mean = style_image - normalization_mean
style_norm = np.array([style_minus_mean])
for layer in style_layers:
layer_output = sess.run(vgg_net[layer], feed_dict={image: style_norm})
layer_output = np.reshape(layer_output, (-1, layer_output.shape[3]))
style_gram_matrix = np.matmul(layer_output.T, layer_output) / layer_output.size
style_features[layer] = style_gram_matrix
# In[13]:
initial = tf.random_normal(shape) * 0.256
image = tf.Variable(initial)
vgg_net = vgg_network(network_weights, image)
# In[14]:
# Loss
original_loss = original_image_weight * (2 * tf.nn.l2_loss(vgg_net[original_layer] - original_features[original_layer]) /
original_features[original_layer].size)
# Loss from Style Image
style_loss = 0
style_losses = []
for style_layer in style_layers:
layer = vgg_net[style_layer]
feats, height, width, channels = [x.value for x in layer.get_shape()]
size = height * width * channels
features = tf.reshape(layer, (-1, channels))
style_gram_matrix = tf.matmul(tf.transpose(features), features) / size
style_expected = style_features[style_layer]
#style_temp_loss = sess.run(2 * tf.nn.l2_loss(style_gram_matrix - style_expected) / style_expected.size)
#print('Layer: {}, Loss: {}'.format(style_layer, style_temp_loss))
style_losses.append(2 * tf.nn.l2_loss(style_gram_matrix - style_expected) / style_expected.size)
style_loss += style_image_weight * tf.reduce_sum(style_losses)
# To Smooth the resuts, we add in total variation loss
total_var_x = sess.run(tf.reduce_prod(image[:,1:,:,:].get_shape()))
total_var_y = sess.run(tf.reduce_prod(image[:,:,1:,:].get_shape()))
first_term = regularization_weight * 2
second_term_numerator = tf.nn.l2_loss(image[:,1:,:,:] - image[:,:shape[1]-1,:,:])
second_term = second_term_numerator / total_var_y
third_term = (tf.nn.l2_loss(image[:,:,1:,:] - image[:,:,:shape[2]-1,:]) / total_var_x)
total_variation_loss = first_term * (second_term + third_term)
# Combined Loss
loss = original_loss + style_loss + total_variation_loss
# In[15]:
style_layer = 'relu2_1'
layer = vgg_net[style_layer]
feats, height, width, channels = [x.value for x in layer.get_shape()]
size = height * width * channels
features = tf.reshape(layer, (-1, channels))
style_gram_matrix = tf.matmul(tf.transpose(features), features) / size
style_expected = style_features[style_layer]
style_losses.append(2 * tf.nn.l2_loss(style_gram_matrix - style_expected) / style_expected.size)
# In[16]:
# Declare Optimization Algorithm
optimizer = tf.train.AdamOptimizer(learning_rate, beta1, beta2)
train_step = optimizer.minimize(loss)
# Initialize Variables and start Training
sess.run(tf.global_variables_initializer())
# In[17]:
for style_layer in style_layers:
print('-------Layer: {} -------'.format(style_layer))
layer = vgg_net[style_layer]
print(sess.run(layer))
feats, height, width, channels = [x.value for x in layer.get_shape()]
size = height * width * channels
print(size)
print('')
# In[25]:
# Declare Optimization Algorithm
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_step = optimizer.minimize(loss)
# Initialize Variables and start Training
sess.run(tf.global_variables_initializer())
for i in range(generations):
sess.run(train_step)
# Print update and save temporary output
if (i+1) % output_generations == 0:
print('Generation {} out of {}, loss: {}'.format(i + 1, generations,sess.run(loss)))
image_eval = sess.run(image)
best_image_add_mean = image_eval.reshape(shape[1:]) + normalization_mean
output_file = 'temp_output_{}.jpg'.format(i)
scipy.misc.imsave(output_file, best_image_add_mean)
# In[ ]:
image_eval = sess.run(image)
best_image_add_mean = image_eval.reshape(shape[1:]) + normalization_mean
output_file = 'final_output.jpg'
scipy.misc.imsave(output_file, best_image_add_mean)
# In[ ]: