-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkdTree.py
185 lines (148 loc) · 5.15 KB
/
kdTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import heapq
import numpy as np
import matplotlib.pyplot as plt
class KDTree(object):
class _Node:
def __init__(self, val=None, left=None, right=None, parent=None, axis=None, idx=None):
self._val = val
self._left = left
self._right = right
self._parent = parent
self._axis = axis
self._idx = idx
def __str__(self):
return '%s(%s, %s)' % (self._val, self._left, self._right)
__repr__ = __str__
@property
def sibling(self):
if self._parent:
if self._parent._left and self._parent._left is self:
return self._parent._right
elif self._parent._right and self._parent._right is self:
return self._parent._left
def is_leaf(self):
return self._left is None and self._right is None
def ___init__(self):
self._root = None
def fit(self, X):
self._k = X.shape[1]
self._root = self._fit(X)
return self
def _fit(self, X, parent=None, depth=0):
n = X.shape[0]
if n == 0:
return None
j = depth % self._k
mid = n // 2
midind = np.argpartition(X[:, j], mid)
c = self._Node(X[midind[mid]], None, None, parent, j, midind[mid])
left = self._fit(X[midind[:mid]], c, depth+1)
right = self._fit(X[midind[mid+1:]], c, depth+1)
c._left = left
c._right = right
return c
def nearest_neighbor(self, p, k=1):
root = self._root
results = []
self._nearest_neighbor(root, k, results, p)
return [(np.sqrt(-d), node) for d, node in sorted(results)]
def _nearest_neighbor_depreciated(self, node, k, results, p, seen=set()):
# if node is root, stop
if node is None:
return
# forward search for the leaf as the current closest point
while not node.is_leaf():
if p[node._axis] < node._val[node._axis]:
if node._left:
node = node._left
else:
break
else:
if node._right:
node = node._right
else:
break
r2 = self._distance(node._val, p)
if len(results) >= k:
if - results[0][0] > r2:
heapq.heapreplace(results, (-r2, node._val))
else:
heapq.heappush(results, (-r2, node._val))
# backward recursively
while node and node._idx not in seen:
seen.add(node._idx)
parent = node._parent
if parent and (parent._val[parent._axis] - p[parent._axis])**2 < -results[0][0]:
self._nearest_neighbor(node.sibling, k, results, p, seen)
node = node._parent
def _nearest_neighbor(self, node, k, results, p):
if not node:
return
r2 = self._distance(node._val, p)
if len(results) >= k:
if - results[0][0] > r2:
heapq.heapreplace(results, (-r2, node._val))
else:
heapq.heappush(results, (-r2, node._val))
if p[node._axis] < node._val[node._axis]:
if node._left is not None:
self._nearest_neighbor(node._left, k, results, p)
else:
if node._right is not None:
self._nearest_neighbor(node._left, k, results, p)
if (node._val[node._axis] - p[node._axis])**2 < -results[0][0]:
if p[node._axis] < node._val[node._axis]:
if node._right is not None:
self._nearest_neighbor(node._left, k, results, p)
else:
if node._left is not None:
self._nearest_neighbor(node._left, k, results, p)
def _distance(self, p1, p2):
return sum([(p1[i] - p2[i])**2 for i in range(self._k)])
def display(self):
root = self._root
fig, ax = plt.subplots(1, 1)
self._ax = ax
self._display(root)
plt.show()
return fig
def _display(self, node):
if node is None:
return
ax = self._ax
xh, xl, yh, yl = 10, 0, 10, 0
x0, y0 = node._val
axis = node._axis
if axis == 1:
yh = yl = y0
if node._parent:
xt, yt = node._parent._val
if xt > x0:
xh = xt
else:
xl = xt
else:
xh = xl = x0
if node._parent:
xt, yt = node._parent._val
if yt > y0:
yh = yt
else:
yl = yt
ax.plot(x0, y0, 'k.')
ax.plot([xl, xh], [yl, yh], 'k-')
self._display(node._left)
self._display(node._right)
if __name__ == "__main__":
X = np.array([[2, 3],
[5, 4],
[9, 6],
[4, 7],
[8, 1],
[7, 2]])
kd = KDTree()
kd.fit(X)
# print(kd.nearest_neighbor([2.1, 3.1]))
print(kd.nearest_neighbor([2, 4.5]))
# print(kd._root)
# kd.display()