-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPred_KNN.py
207 lines (158 loc) · 4.79 KB
/
Pred_KNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from random import random, randint
import math
import numpy as np
import plotly.plotly as py
import plotly.graph_objs as go
weightdomain = [(0, 20)] * 4
def wineprice(rating, age):
peak_age = rating - 50
price = float(rating) / 2
if age > peak_age:
price = price * (5 - (age - peak_age))
else:
price = price * (5 * float(age + 1) / peak_age)
if price < 0:
price = 0.0
return price
def wineset1():
rows = []
for i in xrange(300):
rating = random() * 50 + 50
age = random() * 50
price = wineprice(rating, age)
price *= (random() * 0.2 + 0.9)
rows.append((rating, age, price))
rows = np.array(rows)
return rows
def wineset2():
rows = []
for i in xrange(300):
rating = random() * 50 + 50
age = random() * 50
aisle = float(randint(1, 20))
bottlesize = [375.0, 750.0, 1500.0, 3000.0][randint(0, 3)]
price = wineprice(rating, age)
price *= (bottlesize / 750)
price *= (random() * 0.2 + 0.9)
rows.append((rating, age, aisle, bottlesize, price))
rows = np.array(rows)
return rows
def wineset3():
rows = wineset1()
for row in rows:
if random() < 0.5:
row[-1] *= 0.5
return rows
def euclidean(v1, v2):
d = 0.0
for i in xrange(len(v1)):
d += (v1[i] - v2[i])**2
return math.sqrt(d)
def getdistances(data, vec1):
distancelist = []
for i in xrange(len(data)):
vec2 = data[i][:-1]
distancelist.append((euclidean(vec1, vec2), i))
distancelist.sort()
return distancelist
def knnestimate(data, vec1, k=5):
dlist = getdistances(data, vec1)
avg = 0.0
for i in xrange(k):
idx = dlist[i][1]
avg += data[idx][-1]
avg = avg / k
return avg
def inverseweight(dist, num=1.0, const=0.1):
return num / (dist + const)
def subtractweight(dist, const=1.0):
if dist > const:
return 0
else:
return const - dist
def gaussian(dist, sigma=5.0):
return math.exp(-dist**2 / (2 * sigma**2))
def weightedknn(data, vec1, k=5, weightf=gaussian):
dlist = getdistances(data, vec1)
avg = 0.0
totalweight = 0.0
for i in xrange(k):
dist = dlist[i][0]
idx = dlist[i][1]
weight = weightf(dist)
avg += weight * data[idx][-1]
totalweight += weight
if totalweight == 0:
return 0
avg = avg / totalweight
return avg
def dividedata(data, test=0.05):
trainset = []
testset = []
for row in data:
if random() < test:
testset.append(row)
else:
trainset.append(row)
return trainset, testset
def testalgorithm(algf, trainset, testset):
error = 0.0
for row in testset:
guess = algf(trainset, row[:-1])
error += (row[-1] - guess)**2
return error / len(testset)
def crossvalidate(algf, data, trials=100, test=0.05):
error = 0.0
for i in xrange(trials):
trainset, testset = dividedata(data, test)
error += testalgorithm(algf, trainset, testset)
return error / trials
def rescale(data, scale=None):
if scale is not None and len(scale) == data.shape[1] - 1:
scaleddata = data * (scale + [1])
else:
scaleddata = data / (np.mean(data, 0) + 0.0001)
scaleddata[:, -1] = data[:, -1]
return scaleddata
def createcostfunction(algf, data):
def costf(scale):
sdata = rescale(data, scale)
return crossvalidate(algf, sdata, trials=20)
return costf
def probguess(data, vec1, low, high, k=5, weightf=gaussian):
dlist = getdistances(data, vec1)
nweight = 0.0
tweight = 0.0
for i in xrange(k):
dist = dlist[i][0]
idx = dlist[i][1]
weight = weightf(dist)
v = data[idx][-1]
if v>=low and v<=high:
nweight += weight
tweight += weight
if tweight == 0:
return 0
return nweight/tweight
def cumulativegraph(data,vec1,high,k=5,weightf=gaussian):
t1 = np.arange(0.0, high, 0.1)
cprob = np.array([probguess(data, vec1, 0, v, k, weightf) for v in t1])
data = go.Scatter(x=t1, y=cprob)
fig = go.Figure(data=[data])
py.plot(fig, filename='wineguess')
def probabilitygraph(data, vec1, high, k=5, weightf=gaussian, ss=5.0):
t1 = np.arange(0.0, high, 0.1)
probs = np.array([probguess(data, vec1, v, v+0.1, k, weightf) for v in t1])
smoothed = []
for i in xrange(len(probs)):
sv = 0.0
for j in xrange(len(probs)):
dist = abs(i-j)*0.1
weight = gaussian(dist, sigma=ss)
sv += weight*probs[j]
smoothed.append(sv)
smoothed = np.array(smoothed)
data = go.Scatter(x=t1, y=smoothed)
fig = go.Figure(data=[data])
py.plot(fig, filename='wineguess_smoothed')
data = wineset1()