-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecombination_train.py
218 lines (151 loc) · 6.3 KB
/
recombination_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""
Usage: simulation_train <network_json> [<n_trials>] [-p]
Options:
<n_trials> Number of runs of the net [default: 50].
-p Print the best network
"""
import random
import numpy as np
import re
import os
#os.environ["CUDA_VISIBLE_DEVICES"] = '3'
# disabled to run in cluster
import docopt
from keras.layers import Conv1D, GlobalMaxPool1D, Dense, Dropout, MaxPool1D
from keras.optimizers import Adam
from keras.regularizers import l2
from keras.initializers import Constant
import keras.backend as K
from keras.engine.topology import Layer
from core import MotifMirrorGradientBleeding, CustomSumPool, MCRCDropout
from keras.models import Sequential
from keras.callbacks import EarlyStopping
import tflearn
from data_utils import one_hot, train_test_val_split, reverse_complement, load_recomb_data
from keras.models import Model
from keras.layers import GlobalMaxPool1D, GaussianDropout, Lambda
from keras.regularizers import l2
from sklearn.metrics import roc_auc_score
import gzip as gz
import types
from keras.layers import BatchNormalization
from sim_train import augment_data
def predict_mc(self, X_pred, n_preds=100):
return np.mean([self.predict(X_pred) for i in range(n_preds)], axis=0)
def generate_model(epochs, nn_params):
bigger_model = Sequential()
input_height = 4
input_length=997
bigger_model.add(Conv1D(input_shape=(input_length, input_height), #but one channel in the one hot encoding of the genome
filters=nn_params["input_filters"],
kernel_size=nn_params["filter_length"],
strides=1,
padding="valid",
activation=nn_params["activation"],
kernel_regularizer=l2(nn_params["reg"])
))
if nn_params["batch_norm"]:
bigger_model.add(BatchNormalization())
if nn_params["use_dropout"]:
if nn_params["mc_dropout"]:
if nn_params["apply_rc"]:
bigger_model.add(MCRCDropout(0.1))
else:
bigger_model.add(Lambda(lambda x: K.dropout(x, level=0.1)))
else:
bigger_model.add(Dropout(0.1))
bigger_model.add(MaxPool1D(pool_size=8))
bigger_model.add(Conv1D(
filters=nn_params["input_filters"],
kernel_size=4,
strides=1,
padding="valid",
activation=nn_params["activation"],
kernel_regularizer=l2(nn_params["reg"])
))
if nn_params["batch_norm"]:
bigger_model.add(BatchNormalization())
if nn_params["use_dropout"]:
if nn_params["mc_dropout"]:
if nn_params["apply_rc"]:
bigger_model.add(MCRCDropout(0.1))
else:
bigger_model.add(Lambda(lambda x: K.dropout(x, level=0.1)))
else:
bigger_model.add(Dropout(0.1))
if nn_params["apply_rc"]:
bigger_model.add(CustomSumPool())
divisor = 2
else:
divisor = 1
bigger_model.add(GlobalMaxPool1D(
))
if nn_params["custom_init"]:
bigger_model.add(Dense(2, activation="softmax", kernel_initializer=Constant(np.array([[1]*(nn_params["input_filters"]//divisor), [1]*(nn_params["input_filters"]//divisor)])),
bias_initializer=Constant(np.array([1, -1]))))
else:
bigger_model.add(Dense(2, activation="softmax"))
lrate = 0.01
decay = lrate/epochs
adam = Adam(lr=lrate, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=decay)
bigger_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])
bigger_model.predict_mc = types.MethodType(predict_mc, bigger_model)
return bigger_model
def binary_accuracy(y_true, y_pred):
return np.mean(np.equal(y_true, np.round(y_pred)))
def train(nn_params, n_trials, save_best):
rocs = []
res = []
best_acc = 0
val_accs = []
raw = []
X_train, X_val, X_test, Y_train, Y_val, Y_test = load_recomb_data(False)
if nn_params["augment_data"]:
X_train, Y_train = augment_data(X_train, Y_train)
### removing training data optionally to test how this impacts results
if "data_frac" in nn_params:
n_data = int(float(nn_params["data_frac"]) * len(X_train))
X_train = X_train[:n_data]
Y_train = Y_train[:n_data]
for trail in range(n_trials):
epochs=50
model=generate_model(epochs, nn_params)
mm_0 = MotifMirrorGradientBleeding(0,assign_bias=True)
mm_1 = MotifMirrorGradientBleeding(2,assign_bias=True)
es = EarlyStopping(monitor='val_acc', patience=4)
if nn_params["apply_rc"]:
callbacks=[es, mm_0, mm_1]
else:
callbacks=[es]
model.fit(X_train, tflearn.data_utils.to_categorical(Y_train,2),
validation_data=(X_val, tflearn.data_utils.to_categorical(Y_val,2)),
epochs=epochs, batch_size=64, callbacks=callbacks)
if nn_params["mc_dropout"] and nn_params["use_dropout"]:
predictions = model.predict_mc(X_test)
else:
predictions = model.predict_mc(X_test, n_preds=1)
acc = binary_accuracy(tflearn.data_utils.to_categorical(Y_test,2), predictions)
raw.append((Y_test.tolist(), predictions.tolist()))
if save_best:
if acc > best_acc:
best_acc = acc
from data_utils import save_model_yaml
save_model_yaml(model,"SavedModel")
res.append(acc)
with open(nn_params["output_prefix"]+".json","w") as outfile:
json.dump(raw, outfile)
#print (rocs)
if __name__ == "__main__":
args = docopt.docopt(__doc__)
import json
nn_args = json.load(open(args["<network_json>"]))
if args["<n_trials>"] is None:
args["<n_trials>"] = 50
# not that this is currently incompatible with equivariance, as trials on asymmetric data didn't prove
# useful in these small networks
if "batch_norm" not in nn_args:
nn_args["batch_norm"] = 0
if "augment_data" not in nn_args:
nn_args["augment_data"] = 0
print (nn_args)
train(nn_args, int(args["<n_trials>"]), args["-p"])