forked from krishnanraman/bigdata
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCombinatorics.scala
227 lines (181 loc) · 7.61 KB
/
Combinatorics.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
package com.twitter.scalding.mathematics
import com.twitter.scalding._
import com.twitter.scalding.Dsl._
import cascading.flow.FlowDef
import cascading.tuple.{Fields, TupleEntry}
import cascading.pipe.Pipe
/**
Serve as a repo for self-contained combinatorial functions with no dependencies
such as
combinations, aka n choose k, nCk
permutations , aka nPk
subset sum : numbers that add up to a finite sum
weightedSum: For weights (a,b,c, ...), want integers (x,y,z,...) to satisfy constraint |ax + by + cz + ... - result | < error
...
@author : Krishnan Raman, [email protected]
*/
object Combinatorics {
/**
Given an int k, and an input of size n,
return a pipe with nCk combinations, with k columns per row
Computes nCk = n choose k, for large values of nCk
Use-case: Say you have 100 hashtags sitting in an array
You want a table with 5 hashtags per row, all possible combinations
If the hashtags are sitting in a string array, then
combinations[String]( hashtags, 5)
will create the 100 chose 5 combinations.
Algorithm: Use k pipes, cross pipes two at a time, filter out non-monotonic entries
eg. 10C2 = 10 choose 2
Use 2 pipes.
Pipe1 = (1,2,3,...10)
Pipe2 = (2,3,4....10)
Cross Pipe1 with Pipe2 for 10*9 = 90 tuples
Filter out tuples that are non-monotonic
For (t1,t2) we want t1<t2, otherwise reject.
This brings down 90 tuples to the desired 45 tuples = 10C2
*/
def combinations[T](input:IndexedSeq[T], k:Int)(implicit flowDef:FlowDef):Pipe = {
// make k pipes with 1 column each
// pipe 1 = 1 to n
// pipe 2 = 2 to n
// pipe 3 = 3 to n etc
val n = input.size
val allc = (1 to k).toList.map( x=> Symbol("n"+x)) // all column names
val pipes = allc.zipWithIndex.map( x=> {
val num = x._2 + 1
val pipe = IterableSource( (num to n), x._1 ).read
(pipe, num)
})
val res = pipes.reduceLeft( (a,b) => {
val num = b._2
val prevname = Symbol("n" + (num - 1))
val myname = Symbol( "n" + num)
val mypipe = a._1
.crossWithSmaller(b._1)
.filter( prevname, myname ){
foo:(Int, Int) =>
val( nn1, nn2) = foo
nn1 < nn2
}
(mypipe, -1)
})._1
(1 to k).foldLeft(res)((a,b)=>{
val myname = Symbol( "n" + b)
val newname = Symbol("k" + b)
a.map(myname->newname){
inpc:Int => input(inpc-1)
}.discard(myname)
})
}
/**
Return a pipe with all nCk combinations, with k columns per row
*/
def combinations(n:Int, k:Int)(implicit flowDef:FlowDef) = combinations[Int]((1 to n).toArray, k)
/**
Return a pipe with all nPk permutations, with k columns per row
For details, see combinations(...) above
*/
def permutations[T](input:IndexedSeq[T], k:Int)(implicit flowDef:FlowDef):Pipe = {
val n = input.size
val allc = (1 to k).toList.map( x=> Symbol("n"+x)) // all column names
val pipes = allc.map( x=> IterableSource(1 to n, x).read)
// on a given row, we cannot have duplicate columns in a permutation
val res = pipes
.reduceLeft( (a,b) => { a.crossWithSmaller(b) })
.filter( allc ) {
x: TupleEntry => Boolean
val values = (0 until allc.size).map( i=> x.getInteger( i.asInstanceOf[java.lang.Integer]))
values.size == values.distinct.size
}
// map numerals to actual data
(1 to k).foldLeft(res)((a,b)=>{
val myname = Symbol( "n" + b)
val newname = Symbol("k" + b)
a.map(myname->newname){
inpc:Int => input(inpc-1)
}.discard(myname)
})
}
/**
Return a pipe with all nPk permutations, with k columns per row
*/
def permutations(n:Int, k:Int)(implicit flowDef:FlowDef) = permutations[Int]((1 to n).toArray, k)
/**
Goal: Given weights (a,b,c, ...), we seek integers (x,y,z,...) to satisft
the constraint |ax + by + cz + ... - result | < error
Parameters: The weights (a,b,c,...) must be non-negative doubles.
Our search space is 0 to result/min(weights)
The returned pipe will contain integer tuples (x,y,z,...) that satisfy ax+by+cz +... = result
Note: This is NOT Simplex
WE use a slughtly-improved brute-force algorithm that performs well on account of parallelization.
Algorithm:
Create as many pipes as the number of weights
Each pipe copntains integral multiples of the weight w ie. (0,1w,2w,3w,4w,....)
Iterate as below -
Cross two pipes
Create a temp column that stores intermediate results
Apply progressive filtering on the temp column
Discard the temp column
Once all pipes are crossed, test for temp column within error bounds of result
Discard duplicates at end of process
Usecase: We'd like to generate all integer tuples for typical usecases like
0. How many ways can you invest $1000 in facebook, microsoft, hp ?
val cash = 1000.0
val error = 5.0 // max error $5, so its ok if we cannot invest the last $5 or less
val (FB, MSFT, HP) = (23.3,27.4,51.2) // share prices
val stocks = IndexedSeq( FB,MSFT,HP )
weightedSum( stocks, cash, error).write( Tsv("invest.txt"))
1. find all (x,y,z) such that 2x+3y+5z = 23, with max error 1
weightedSum( IndexedSeq(2.0,3.0,5.0), 23.0, 1.0)
2. find all (a,b,c,d) such that 2a+12b+12.5c+34.7d = 3490 with max error 3
weightedSum( IndexedSeq(2.0,12.0,2.5,34.7),3490.0,3.0)
This is at the heart of portfolio mgmt( Markowitz optimization), subset-sum, operations-research LP problems.
*/
def weightedSum( weights:IndexedSeq[Double], result:Double, error:Double)(implicit flowDef:FlowDef):Pipe = {
val numWeights = weights.size
val allColumns = (1 to numWeights).map( x=> Symbol("k"+x))
// create as many single-column pipes as the number of weights
val pipes = allColumns.zip(weights).map( x=> {
val (name,wt) = x
IterableSource( (0.0 to result by wt), name).read
}).zip( allColumns )
val first = pipes.head
val accum = (first._1, List[Symbol](first._2))
val rest = pipes.tail
val res = rest.foldLeft(accum)((a,b)=>{
val (apipe, aname) = a
val (bpipe, bname) = b
val allc = (List(aname)).flatten ++ List[Symbol](bname)
// Algorithm:
// Cross two pipes
// Create a temp column that stores intermediate results
// Apply progressive filtering on the temp column
// Discard the temp column
// Once all pipes are crossed, test for temp column within error bounds of result
// Discard duplicates at end of process
( apipe.crossWithSmaller(bpipe)
.map(allc->'temp){
x:TupleEntry =>
val values = (0 until allc.size).map( i=> x.getDouble( i.asInstanceOf[java.lang.Integer]))
values.sum
}.filter('temp){
x:Double => if( allc.size == numWeights) (math.abs(x-result)<= error) else (x <= result)
}.discard('temp), allc )
})._1.unique(allColumns)
(1 to numWeights).zip(weights).foldLeft( res) ((a,b) => {
val (num,wt) = b
val myname = Symbol("k"+num)
a.map( myname->myname){ x:Int => (x/wt).toInt }
})
}
/**
Does the exact same thing as weightedSum, but filters out tuples with a weight of 0
The returned pipe contain only positive non-zero weights.
*/
def positiveWeightedSum( weights:IndexedSeq[Double], result:Double, error:Double)(implicit flowDef:FlowDef):Pipe = {
val allColumns = (1 to weights.size).map( x=> Symbol("k"+x))
weightedSum( weights, result, error).filter( allColumns ){
x:TupleEntry => (0 until allColumns.size).map( i=> x.getDouble(i.asInstanceOf[java.lang.Integer])!=0.0).reduceLeft(_&&_)
}
}
}