-
Notifications
You must be signed in to change notification settings - Fork 0
/
Notesoptimal.tex
1048 lines (922 loc) · 32.4 KB
/
Notesoptimal.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[final]{siamltex}
% written by Reinhard January 23 2019
% updated by Reinhard Feb. 1
% updated by Reinhard Feb. 5
% updated by Reinhard March 21
% updated by Reinhard March 25
% updated by Reinhard March 26
\usepackage{graphicx,amsmath,amsfonts,color,a4,pifont}
\usepackage{latexsym,amssymb,epsf,subfigure}
\usepackage{lineno}
\linenumbers
%\usepackage[hyperref=true, url=false,
% isbn=false,
% backref=true,
% style=custom-numeric-comp,
% citereset=chapter,
% maxcitenames=3,
% maxbibnames=100,
% block=none]{biblatex}
\usepackage[T1]{fontenc}
\usepackage[dvips]{epsfig}
\usepackage[dvips]{graphicx}
\usepackage{pifont}
\usepackage{ifthen}
\usepackage{float}
\usepackage[algoruled,titlenumbered]{}
\usepackage{hyperref}
\usepackage{cite}
%\usepackage{refcheck}
\newtheorem{assumption}{Assumption}
\newtheorem{remark}{Remark}
\newtheorem{observation}{Observation}
\newtheorem{example}{Example}
%\newcommand{\mat}{\left[ \begin{array}{c} }
%\newcommand{\rix}{\end{array} \right] }
\newcommand{\uha}{^{\frac{1}{2}}}
\newcommand{\umha}{^{-\frac{1}{2}}}
\newcommand{\cgi}{ZE^{-1}Z^T}
\newcommand{\muha}{^{-\frac{1}{2}}}
\newcommand{\innbnR}{\in\mathbb{R}^{n\times n}}
\newcommand{\innbrR}{\in\mathbb{R}^{n\times r}}
\newcommand{\innbsR}{\in\mathbb{R}^{n\times s}}
\newcommand{\innCnn}{\in\mathbb{C}^{n\times n}}
\newcommand{\innCrr}{\in\mathbb{C}^{r\times r}}
\newcommand{\innCrn}{\in\mathbb{C}^{r\times n}}
\newcommand{\innCnr}{\in\mathbb{C}^{n\times r}}
\newcommand{\innbnC}{\in\mathbb{C}^{n\times n}}
\newcommand{\innbCnnmr}{\in\mathbb{C}^{n\times n-r}}
\newcommand{\innCnmr}{\in\mathbb{C}^{n-r}}
\newcommand{\R} {\mathbb{R}}
\newcommand{\bR} {\mathbb{R}}
\newcommand{\bRnn} {\mathbb{R}^{n \times n}}
\DeclareMathOperator*{\dimn}{dim}
\DeclareMathOperator*{\rankn}{rank}
\DeclareMathOperator*{\spann}{span}
\DeclareMathOperator*{\argmax}{argmax}
\newcommand{\padef} {P_{\mathrm{ADEF}}}
\newcommand{\U}{\mathcal{U}}
\newcommand{\Up}{\mathcal{U}^\perp}
\newcommand{\Y}{\mathcal{Y}}
\newcommand{\Z}{\mathcal{Z}}
\newcommand{\V}{\mathcal{V}}
\newcommand{\W}{\mathcal{W}}
\newcommand{\F}{\mathcal{F}}
\renewcommand{\L}{\mathcal{L}}
\newcommand{\A}{\mathbf{A}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\B}{\mathbf{B}}
\newcommand{\I}{\mathbf{I}}
\newcommand{\M}{\mathbf{M}}
\newcommand{\N}{\mathbf{N}}
\renewcommand{\S}{\mathbf{S}}
\newcommand{\D}{\mathbf{D}}
\renewcommand{\P}{\mathbf{P}}
%\newcommand{\R}{\mathbf{R}}
\newcommand{\J}{\mathbf{J}}
\renewcommand{\u}{\mathbf{u}}
\newcommand{\vc}{\mathbf{v}}
\newcommand{\f}{\mathbf{f}}
\newcommand{\Uc}{\mathbf{U}}
\newcommand{\g}{\mathbf{g}}
\newcommand{\x}{\mathbf{x}}
\newcommand{\Q}{\mathbf{Q}}
\newcommand{\y}{\mathbf{y}}
\newcommand{\w}{\mathbf{w}}
\newcommand{\Ww}{\mathbf{W}}
\renewcommand{\H}{\mathcal{H}}
\newcommand{\Hh}{\mathbf{D}}
\newcommand{\Upd}{U_{\perp}}
\newcommand{\nquad}{\mathbb{R}^{n,n}}
\newcommand{\rquad}{\mathbb{R}^{r,r}}
\newcommand{\rrec}{\mathbb{R}^{n,r}}
\newcommand{\trec}{\mathbb{R}^{n,t}}
\newcommand{\esym}{Z^TAZ}
\newcommand{\enotsym}{Y^TAZ}
\newcommand{\qnotsym}{ZE^+Y^T}
\newcommand{\indi}{\mathcal{I}}
\newcommand{\indj}{\mathcal{J}}
\newcommand{\svdy}{U_Y\Sigma_Y V_Y^T}
\newcommand{\svdz}{U_Z\Sigma_Z V_Z^T}
\newcommand{\onevec}{\mathbbm{1}}
\newcommand{\coloneq}{\mathrel{\mathop:}=}
\newcommand{\eqcolon}{=\mathrel{\mathop:}}
\newcommand{\cupdot}{\stackrel{\cdot}{\cup}}
\renewcommand{\labelenumi}{(\alph{enumi})}
\newcommand{\beqo}{\begin{eqnarray*}}
\newcommand{\beq}{\begin{eqnarray}}
\newcommand{\eeqo}{\end{eqnarray*}}
\newcommand{\eeq}{\end{eqnarray}}
%\newcommand{\bproof}{{\bf Proof: \ }}
%\newcommand{\eproof}{\hfill q.e.d. \\ }
%\newcommand{\eproof}{\hfill $\Box $ \\ }
\setlength{\parindent}{0pt}
\setlength{\parskip}{2pt}
%\onehalfspace
%\DeclareMathOperator{\im}{im}
%\DeclareMathOperator{\span}{span}
\newcommand{\matr}[2]{\left[ \begin{array}{#1} #2 \end{array} \right]}
\newcommand{\mat}{\left[ \begin{array}{c} }
\newcommand{\rix}{\end{array} \right] }
\newcommand\norm[1]{\left\lVert#1\right\rVert}
\newcommand{\nrm}[2][]{\ensuremath{\left\|#2\right\|_{#1}}}
\newcommand{\nn}{\nonumber}
\newcommand{\Esym}{U^TAU}
\newcommand{\PDS}{I - AU(U^TAU)^{-1}U^T}
\numberwithin{equation}{section}
\newcommand{\im} {{\cal R}}
\newcommand{\kernal} {{\cal N}}
\newcommand{\nsp} {{\cal N}}
\newcommand{\ran} {{\cal R}}
\newcommand{\nul} {{\cal N}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\bCn}{\mathbb{C}^n}
\newcommand{\Kr}{\mathcal{K}}
\newcommand{\Cn}{\mathbb{C}^n}
\newcommand{\Cnn}{\mathbb{C}^{n \times n}}
\newcommand{\Crn}{\mathbb{C}^{r \times n}}
\newcommand{\Cnr}{\mathbb{C}^{n \times r}}
\newcommand{\Cnnr}{\mathbb{C}^{n \times n-r}}
\newcommand{\Crnn}{\mathbb{C}^{n-r \times n}}
\newcommand{\Cnmr}{\mathbb{C}^{n-r \times n-r}}
\newcommand{\inCnn}{\in \mathbb{C}^{n \times n}}
\newcommand{\Crr}{\mathbb{C}^{r \times r}}
\newcommand{\Projj}[2]{P_{\mathcal{#1},\mathcal{#2}}}
\newcommand{\Proj}[1]{P_{\mathcal{#1}}}
%\newcommand{\smat}[1]{\left[\begin{smallmatrix} #1\end{smallmatrix}\right]}
%\newcommand{\nquad}{\mathbb{R}^{n,n}}
%\newcommand{\rquad}{\mathbb{R}^{r,r}}
%\newcommand{\rrec}{\mathbb{R}^{n,r}}
%\newcommand{\trec}{\mathbb{R}^{n,t}}
%\newcommand{\esym}{Z^TAZ}
%\newcommand{\enotsym}{Y^TAZ}
%\newcommand{\qnotsym}{ZE^+Y^T}
%\newcommand{\indi}{\mathcal{I}}
%\newcommand{\indj}{\mathcal{J}}
%\newcommand{\svdy}{U_Y\Sigma_Y V_Y^T}
%\newcommand{\svdz}{U_Z\Sigma_Z V_Z^T}
%\newcommand{\onevec}{\mathbbm{1}}
%\newcommand{\coloneq}{\mathrel{\mathop:}=}
%\newcommand{\eqcolon}{=\mathrel{\mathop:}}
%\newcommand{\cupdot}{\stackrel{\cdot}{\cup}}
%\renewcommand{\labelenumi}{(\alph{enumi})}
\author{
Luis Garc\'{i}a Ramos\footnotemark[1]
\and
Reinhard Nabben\footnotemark[1]
}
\title{On Optimal Algebraic Multigrid Methods}
\begin{document}
\maketitle
\renewcommand{\thefootnote}{\fnsymbol{footnote}}
\footnotetext[1]{
Technische Universit\"at Berlin, Institut f\"ur Mathematik, Stra\ss e des 17.
Juni 136, D-10623 Berlin,
Germany
(\{garcia, nabben\}@math.tu-berlin.de).
}
\renewcommand{\thefootnote}{\arabic{footnote}}
\begin{abstract}
In this note we present an alternative way to obtain optimal
interpolation operators for two-grid methods applied to Hermitian positive
definite linear systems. In \cite{FalVZ05,Zik08} the $A$-norm of the error
propagation operator of algebraic multigrid methods is characterized. These
results are just recently used in \cite{XuZ17, Bra18} to determine optimal
interpolation operators. Here we use a characterization not of the $A$-norm but
of the spectrum of the error propagation operator of two-grid methods, which
was proved in \cite{GarKN18}. This characterization holds for arbitrary
matrices. For Hermitian positive definite systems this result leads to
optimal interpolation operators with respect to the $A$-norm in a short way,
moreover, it also leads to optimal interpolation operators with respect to the
spectral radius. For the symmetric two-grid method (with pre- and
post-smoothing)
the optimal interpolation operators are the same. But for a two-grid method
with only post-smoothing the optimal interpolations (and hence the
optimal algebraic multigrid
methods) are different. Moreover, using the characterization of the
spectrum,
we can show that the found optimal interpolation operators are also optimal
with
respect to the condition number of the multigrid preconditioned system.
\end{abstract}
\begin{keywords}
multigrid, optimal interpolation operator, two-grid methods
\end{keywords}
\begin{AMS}
65F10, 65F50, 65N22, 65N55.
\end{AMS}
\pagestyle{myheadings}
\thispagestyle{plain}
\markboth{L. Garc\'{i}a Ramos, R. Nabben} {Optimal Algebraic Multigrid}
\section{Introduction}
Typical multigrid methods to solve the linear system
\[
Ax = b,
\]
where $A$ is an $n \times n$ matrix, consist of two ingredients, the smoothing
and the
coarse grid correction. The smoothing is typically done by a
few
steps of a basic stationary iterative method, like the Jacobi or Gauss-Seidel
method. For the coarse grid correction,
a {\it prolongation} or {\it interpolation}
operator $P \in \Cnr$ and a {\it
restriction} operator $R \in \Crn$ are needed. The coarse grid matrix is then
defined as
\beq \label{def:multAC}
A_C := RAP \innCrr.
\eeq
Here we always assume that $A$ and $A_C$ are non-singular.
%Then
%let
%\beq \label{def:multQPD}
%Q := PA_C^{-1}R.
%\eeq
The multigrid or algebraic multigrid (AMG) error
propagation matrix is then given by
\beq \label{mgiteration}
E_M = (I-M_2^{-1}A)^{\nu_2}(I - PA_C^{-1}RA)(I-M_1^{-1}A)^{\nu_1},
\eeq
where $M_1^{-1} \innCnn$ and $M_2^{-1} \innCnn$ are {\it smoothers}, $\nu_1$
and $\nu_2$ are the number of pre- and post-smoothing steps respectively, and
$PA_C^{-1}R$
is
the
{\it
coarse grid
correction} matrix. The multigrid method is convergent if and only if the
spectral radius of the
error propagation matrix
$\rho(E_m)$ is less than one.
Alternatively, the norm of the error propagation matrix $\|E_M\|$
can be considered, where
$\|\cdot\|$
is
a
consistent matrix
norm, and in this case one has
\[
\rho(E_M) \leq \|E_M\|.
\]
The aim of algebraic multigrid methods is to balance the interplay between
smoothing and coarse grid correction steps. However, most of the existing AMG
methods first fix a smoother and then optimize a certain quantity to choose
the interpolation $P$ and restriction $R$.
To simplify the analysis, we assume that there exists a non-singular matrix $X$
such that
\beq \label{mgx}
(I-X^{-1}A) = (I-M_1^{-1}A)^{\nu_1}(I-M_2^{-1}A)^{\nu_2},
\eeq
it can be shown that such a matrix $X$ exists if the spectral radius of $
(I-M_1^{-1}A)^{\nu_1}(I-M_2^{-1}A)^{\nu_2}$ is less than one, see e.g.
\cite{BenS97}. Moreover, note that the matrix $E_M$ can be
written as
\beq \label{mgb}
E_M = I-BA,
\eeq
where the matrix $B$ is known as the multigrid preconditioner, i.e., $B$ is an
approximation of $A^{-1}$.
Therefore,
eigenvalue estimates of $BA$ are of interest, and they also lead to
estimates for
the eigenvalues of
$E_M$.
%Prolongation and restriction operators are called optimal if $\rho(E_M)$ is
%minimal.
%%%%%% Theoretical results for multigrid methods are mostly obtained for
%symmetric positive definite matrices
%
%If the spectral radius of $E_M$ is less than one there is a non-singular
%matrix
%$B$ such that
%Next we will consider the case $\nu_1 = 1$, $\nu_2 = 0$. We obtain
% \beqo
%T = (I-M_2^{-1}A)(I - QA).
%\eeqo
%Hence,
%\beqo
%T & = & I - M_2^{-1}A -QA + M_2^{-1}AQA\\
%& = & I - ( M_2^{-1} + Q - M_2^{-1}AQ)A \\
%& = & I - ( M_2^{-1} P_D + Q)A.
%\eeqo
%Therefore, the matrix $B$ in \eqref{mgb} is
%\beqo
%B = M_2^{-1} P_D + Q,
%\eeqo
%with $P_D = I-AQ$.
%Thus $B$ is just $P_{ADEF}$, the adapted deflation preconditioner.
%For $\nu_1 = 1$ and $\nu_2 = 0$
%we have
%\beqo
%T = (I - QA)(I-M_1^{-1}A).
%\eeqo
%Hence,
%\beqo
%T & = & I - QA - M_1^{-1}A + QAM_1^{-1}A \\
%& = & I - (Q + M_1^{-1} - QAM_1^{-1})A\\
%& = & I - (Q_D M_1^{-1} + Q)A.
%\eeqo
%Thus, the matrix $B$ in \eqref{mgb} is
%\beqo
%B = Q_D M_1^{-1} + Q.
%\eeqo
%Now, let us consider the general case, i.e. $T$ is given as in
%\eqref{mgiteration}.
%then thereexists such amatrix $X$,
The following theorem, proved by Garc{\'i}a Ramos, Kehl and Nabben in
\cite{GarKN18},
gives a characterization of the spectrum of $BA$, and hence a
characterization of the spectrum of the general error propagation matrix $E_M$.
\begin{theorem} \label{theo:mg:eig}
Let $A \innCnn$ be non-singular, and let $P \innCnr $ and $R \innCrn $ such
that $RAP$ is non-singular. Moreover, let $M_1 \innCnn$ and $M_2 \innCnn $ be
such that that the matrices $X$ in \eqref{mgx} and $RXP$ are non-singular.
Then the following statements hold:
\begin{enumerate}
\item[(a)] The multigrid preconditioner $B$ in
\eqref{mgb} is non-singular.
\item[(b)] If $\tilde P, \tilde R \in \bC^{n \times n-r}$ are matrices
such that the columns of
$\tilde P$ and $\tilde R $ form orthonormal bases of $(\im
(P))^\perp$ and
$(\im (R^{H}))^\perp$ (the orthogonal complements of $\im
(P)$ and $\im (R^{H}$ in the Euclidean inner product) respectively,
then
the
matrices
$\tilde
P^HA^{-1}\tilde
R$ and $P^HX^{-1}\tilde R$
are
non-singular
and the spectrum of
$BA$ is given by
\[\sigma(BA) = \{1\} \cup \sigma(\tilde P^HX^{-1}\tilde R (\tilde
P^HA^{-1}\tilde
R)^{-1}).\]
%where the eigenvalue one with multiplicity $r$, the other eigenvalues are
%nonzero and are the eigenvalues of
%\[
%\tilde P^HX^{-1}\tilde R (\tilde P^HA^{-1}\tilde R)^{-1},
%\]
%i.e.
%\[
%\sigma(BA) = \{1\} \cup \sigma(\tilde P^HX^{-1}\tilde R (\tilde
%P^HA^{-1}\tilde
%R)^{-1}).
%\]
\end{enumerate}
\end{theorem}
We will apply this theorem to Hermitian positive definite (HPD) matrices to
determine
the
optimal interpolation operators of AMG methods with respect to
the
spectral radius of the error propagation matrix.
For HPD
matrices, optimal interpolation operators with respect to the
$A$-norm have been obtained recently in \cite{XuZ17, Bra18}.
We will show that the optimal interpolation operators with respect to the
spectral
radius
for
the
symmetric/symmetrized
multigrid
method
(with
pre-
and
post-smoothing) and
the
optimal
interpolation operator with respect to the $A$-norm are the same. But for
multigrid
with
only
a
post-smoothing step
the optimal interpolation operators with respect to the spectral radius and
$A$-norm
(and
hence
the
optimal
algebraic
multigrid
methods)
are different. Using Theorem \ref{theo:mg:eig} we can also show that the
interpolation operators with respect to the spectral radius are also optimal
with
respect to the condition number of the multigrid preconditioned system.
\section{Optimal interpolation for Hermitian positive definite matrices}
In this section we consider a HPD matrix $A$. Recall that he norm induced by
$A$ (or $A$-norm) is defined for $v \in \bCn$ and $S
\in \Cnn$ by
\[
\| v \|_A^2 = (v,v)_A = \|A\uha v\|_2^2,
\]
and
\[
\| S \|_A = \|A\uha S A\umha\|_2.
\]
We will study the following two-grid methods given by the error
propagation
operators
\beq \label{mge}
E_{TG} = (I-M^{-H}A)(I - PA_C^{-1}P^HA)
\eeq
and the symmetrized version
\beq \label{smge}
E_{STG} = (I-M^{-H}A)(I - PA_C^{-1}P^HA)(I-M^{-1}A).
\eeq
Thus we are using $R = P^H$. The range of $P$,
i.e.
$\ran
(P)$,
is
called
the
coarse space $V_c$.
Here we fix the smoother $M^{-1}$ and let $E_{TG}$ and $E_{STG}$ vary with
respect to the choice of the interpolation operator $P$. In addition, we
assume that the smoother
$M^{-1}$
satisfies
\[
\|(I-M^{-1}A \|_A < 1,
\]
which is equivalent to the condition
\beq \label{eq:pos}
M + M^{H} - A \quad \mbox{is positive definite,}
\eeq
see, e.g., \cite{Vas08}. Given a fixed smoother $M^{-1}$ such that $\|
I-M^{-1}A\|_A < 1$, many AMG
methods are designed to minimizes $ \|E_{TG}\|_A$ or a related quantity. We
say an interpolation operator $P^\star$ is optimal
if it minimizes $ \|E_{TG}\|_A$. In
view of the equality
\beq \label{normeq}
\|E_{STG}\|_A = \|E_{TG}\|_A^2,
\eeq
proved by
Falgout
and Vassilevski in
\cite{FalV04}, we can conclude that an optimal interpolation operator
$P^\star$
also minimizes$ \|E_{STG}\|_A$. Zikatanov
proved in \cite[Lemma 2.3]{Zik08} that
\[
\|E_{TG}\|_A^2 = 1 - \frac{1}{K(V_c)},
\]
where $ K(V_c)$ is a quantity depending on the coarse space, defined by
(check this)
\[ K(V_c) = \sup_{v \in \Cn} \frac{\|(I-Q)v\|_{M^{-1}}^2}{\|v\|_A} \]
% The so called XZ-identity is used to get this result \cite{XuZ02}
Although this
equality has been known for a long time, only recently it was used to
determine
optimal prolongation operators $P$ which lead to a minimal value of
$\|E_{TG}\|_A$ for a given smoother (see \cite{XuZ17, Bra18}). We now recall
this result.
We will give an alternative proof of this result using the
characterization
of
the
eigenvalues of the multigrid iteration operator given in Theorem
\ref{theo:mg:eig}.
We consider first the more general error propagation matrix $E_M$ in
\eqref{mgiteration} with $R= P^H$ and $E_{M} = I - BA$. We let $\U=
\mathcal{R}(P) $ be the
the
range of the interpolation operator
$P \in \Cnr$, and $\tilde U \in \Cnmr $ be an matrix with orthonormal columns
that span
$\U
^\perp$ (the
orthogonal complement of $\U$ with respect to the Euclidean inner product).
Then
Theorem \ref{theo:mg:eig} leads to
\[
\sigma (BA) = \{1\} \cup \sigma(\tilde U^HX^{-1}\tilde U (\tilde
U^HA^{-1}\tilde U)^{-1}).
\]
In what follows, given a matrix $C \inCnn$ with real eigenvalues we will denote
by
$\lambda_{\max}(C)$ and
$\lambda_{\min}(C)$
the maximum and minimum eigenvalues of $C$ respectively. Assuming that $X$ is
Hermitian positive definite and that
$\lambda_{\max}(BA)$ is at most one, we have
$\rho(E_M) = 1 - \lambda_{\min}(BA)$. In order to find an optimal interpolation
operator for the error propagation matrix, we need to first find
\[ \tilde{U}^\star \in \argmax_{\tilde U \innbCnnmr,\, \tilde
U^H\tilde U = I}
\lambda_{\min}(\tilde
U^HX^{-1}\tilde
U
(\tilde
U^HA^{-1}\tilde U)^{-1}),
\]
and then find an interpolation operator $P^\star \in \Cnr$ such that
$\im(P^\star) =\im(\tilde U^\star)^{\perp}$. The following lemma solves the
first problem.
\begin{lemma} \label{theo:main}
Let $A, X \innCnn$ be Hermitian positive definite and let
$\{(\mu_i,w_i)\}_{i=1}^n$ be the eigenpairs of the generalized eigenvalue
problem
\[X^{-1}w = \mu
A^{-1}w,\]
where
\beq
0 < \mu_1 \leq \mu_2 \leq \ldots \leq \mu_n.
\eeq
Then
\[\max_{\tilde U \innbCnnmr, \, \tilde U^H \tilde U=I} \lambda_{\min} (\tilde
U^HX^{-1}\tilde U
(\tilde
U^HA^{-1}\tilde U)^{-1}) = \mu_{r+1}
\]
which is achieved by
\[
\tilde W = [\tilde{w}_{r+1}, \ldots, \tilde{w}_n],
\in \C^{n-r}\]
where the columns of $\tilde W$ are orthogonal in the Euclidean inner
product and satisfy
$\spann\{\tilde{w}_i\}_{i=1}^n = \spann\{w_i\}_{i=1}^n$.
\end{lemma}
\begin{proof}
Let $\tilde{U} \in \C^{n \times (n-r)}$ with $\tilde{U}^H\tilde{U} = I$. By the
Courant-Fischer theorem we obtain
\begin{align*}
\lambda_{\min} (\tilde U^HX^{-1}\tilde U (\tilde U^HA^{-1}\tilde U)^{-1}) & =
\min_{z \in \Cnnr} \frac{z^H \tilde U X^{-1} \tilde U z }{ z^H
(\tilde U^H A^{-1} \tilde U)^{-1}}\\
& = \min_{ z \in \im(\tilde U)}\frac{z^{H} X^{-1}z}{z^HA^{-1}z},
\end{align*}
Thus, if $\mathbf{V}$ is the set of subspaces of $\Cnn$ of dimension $n \times
(n-r)$, we have
\[\max_{\tilde{U} \in \Cnnr, \, \tilde{U}^H\tilde U = I }
\lambda_{\min} (\tilde U^HX^{-1}\tilde U (\tilde U^HA^{-1}\tilde U)^{-1}) =
\max_{\tilde{\mathcal{U}} \in \mathbf V } \min_{z \in \tilde{\mathcal{U}}}
\frac{z^H X^{-1} z}{(z^HA^{-1}z)^{-1}} = \mu_{r+1},
\]
and the maximum is attained by choosing a matrix $\tilde W =
[\tilde w_{r+1}, \ldots, \tilde w _{n}]$ such that
the columns of $\tilde W$ are orthogonal in the Euclidean inner
product and satisfy
$\spann\{\tilde{w}_i\}_{i=1}^n = \spann\{w_i\}_{i=1}^n$.
\end{proof}
The previous lemma is the main tool to obtain the optimal interpolation
operators.
\begin{theorem}\label{theo:main}
Let $A \innCnn$ and $ X \innCnn$ as in \eqref{mgx} be Hermitian positive
definite. Let $
\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n $
be the eigenvalues of $X^{-1}A$ and let $u_i$, $i = 1, \ldots, n$, be the
corresponding eigenvectors. Let $\{(\lambda_i, u_i)\}_{i=1}^n$ be the
eigenpairs
of $X^{-1}A$, where $
\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n $, and suppose that
$\lambda_{\max}(BA) \leq 1$. Then
\beq
\min_{\substack{P \in \Cnr \\ \rank(P)=r}} \rho(E_{M}) = 1 - \min_{\substack{P
\in \Cnr \\ \rank(P)=r}} \lambda_{\min}(BA) = 1 -
\lambda_{r+1}.
\eeq
An optimal interpolation operator is given by
\begin{equation} \label{eq:popt}
P_{\mathrm{opt}} = [u_{1}, \ldots , u_r].
\end{equation}
\end{theorem}
\begin{proof}
Since $\lambda_{\max}(BA) \leq 1$, we have that
\beqo
\rho(E_{M}) = 1 - \lambda_{\min}(BA).
\eeqo
Note that the eigenvalues $\lambda_i $ are the same as the $\mu_i$ in Theorem
\ref{theo:main}.
According to theorem \ref{theo:main}, we need to find vectors which are
orthogonal
to
the eigenvectors $w_{r+1}, \ldots , w_n$ of the generalized eigenvalue problem
$X^{-1}w = \mu A^{-1}w$. Now, consider the vectors $u_i$, $i = 1, \ldots, r$.
The vectors are also eigenvectors of the generalized eigenvalue problem $Au =
\lambda Xu$. All $Xu_i = w_i$ are eigenvectors of the generalized
eigenvalue problem $X^{-1}w = \mu A^{-1}w$. But the $w_i$ are
$X^{-1}$-orthogonal (the $X\umha w_i$ are eigenvectors of the Hermitian matrix
$X\uha A^{-1} X\uha$). Thus, the $u_i$, $i = 1, \ldots, r$ are orthogonal to
the $w_{r+1}, \ldots , w_n$ in the Euclidean inner product and the
interpolation operator
$P_{\mathrm{opt}}$ given by \eqref{eq:popt} is the corresponding
minimizer. \end{proof}
Now, we consider $E_{TG}$ and $E_{STG}$ defined in \eqref{mge} and
\eqref{smge}. Again $E_{STG}$ and $E_{TG}$ can be written as
\beqo
E_{STG} & = & I - B_{STG}A, \\
E_{TG} & = & I - B_{TG}A,
\eeqo
for some matrices $B_{STG}$ and $B_{TG}$ in $\Cnn$. A straightforward
computation shows that $B_{STG}$ is Hermitian, and by
\cite[Lemma 2.11]{Ben01} we have
\beq \label{ben}
\|E_{STG}\|_A = \|I - B_{STG}A\|_A = \rho(I - B_{STG}A).
\eeq
Moreover, the maximal eigenvalue of $B_{STG}A$ satisfies
$\lambda_{\max}(B_{STG}A) \leq 1$, see e.g. \cite[Theorem 3.16]{Vas08}.
We
then
obtain
\[
\|E_{TG}\|_A^2 = \|E_{STG}\|_A = \rho(I - B_{STG}A) = 1 -
\lambda_{min}(B_{STG}A).
\]
The matrix $X$ in \eqref{mgx} is given by
\beq \label{defX}
X^{-1}_{STG} = M^{-H} + M^{-1} - M^{-H} AM^{-1} = M^{-H}( M + M^{H} -
A)M^{-1}.
\eeq
With \eqref{eq:pos} we have that $X_{STG}$ is Hermitian positive definite.
We have thus the following corollary.
\begin{corollary} \label{coro:one}
Let $A\inCnn$ be Hermitian positive definite. Let $ M \inCnn$ such $M + M^H -
A$ is Hermitian positive definite, and
let $X_{STG}^{-1}$ be as in \eqref{defX}, and let $\{(\lambda_i,
u_i)\}_{i=1}^n$
be
the eigenpairs
of $X_{STG}^{-1}A$, where $
\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n $,
Then
\beq
\min_{\substack{P \in \Cnr \\ \rank(P)=r}} \|E_{STG}\|_A =
\min_{\substack{P \in \Cnr \\ \rank(P)=r}}\rho(E_{STG}) =
\min_{\substack{P \in \Cnr \\ \rank(P)=r}}\|E_{TG}\|_A^2 = 1 -
\lambda_{r+1}.
\eeq
An optimal interpolation operator is given by
\[
P_{\mathrm{opt}} = [v_{1}, \ldots , v_r].
\]
\end{corollary}
\begin{proof}
We have that $X_{STG}$ is positive definite and $\lambda_{\max}(B_{STG}A) \leq
1$. By Theorem \ref{theo:main} we obtain the desired result.
\end{proof}
Next, let us consider the non-symmetric multigrid method defined implicitly
by $E_{TG}$, in \eqref{mge}.
% For the symmetric multigird we have that the above $P_{opt}$ minimizes both
%the $A$-norm and the spectral radius. Since $\sigma(B_{STG}A) \subset (0,1]$
%we have $\rho(E_{STG}) = 1 - \lambda_{min}(X_{STG}^{-1}A)$. This does not
%hold for the non symmetric multigrid
We use a Hermitian positive definite smoother $M^{-1}$. The matrix $X$ in
\eqref{mgx} is given by
\beq \label{defXtg}
X^{-1}_{TG} = M^{-1}.
\eeq
We have
\beqo
\rho(E_{TG}) = 1 - \lambda_{\min}(B_{TG}A)
\ \ \mbox{or} \ \
\rho(E_{TG}) = -(1 - \lambda_{\max}(B_{TG}A)).
\eeqo
Therefore, it is not clear which of $\lambda_{\min}(B_{TG}A)$
$\lambda_{\max}(B_{TG}A)$ leads to the spectral radius.
One way to overcome this problem is scaling. Note that we have for all
Hermitian positive defnite matrices $X$ and $A$ and for all matrices $\tilde U
\in \Cnnr$
%\beqo
%& & \min \sigma(\tilde U^HX^{-1}\tilde U (\tilde U^HA^{-1}\tilde U)^{-1})\\
%& = & \min_{z \innCnmr} (z^H\tilde U^HX^{-1}\tilde Uz (z^H\tilde
%U^HA^{-1}\tilde Uz)^{-1})\\
%& = & \min_{\tilde z \in {\ran (\tilde U)} } (\tilde z^HX^{-1}\tilde z
%(\tilde z^HA^{-1}\tilde z)^{-1%})\\
%& \geq & \min_{\tilde z \in \bCn } (\tilde z^HX^{-1}\tilde z (\tilde
%z^HA^{-1}\tilde z)^{-1})\\
%& = & \lambda_{min}(X^{-1}A),
%\eeqo
%and similarly
\beqo
\lambda_{\max}(\tilde U^HX^{-1}\tilde U (\tilde U^HA^{-1}\tilde
U)^{-1})
& = & \max_{z \innCnmr} \frac{z^H\tilde U^HX^{-1}\tilde Uz}{ z^H\tilde
U^HA^{-1}\tilde Uz}\\
& = & \max_{\tilde z \in {\ran (\tilde U)} } \frac{\tilde z^HX^{-1}\tilde z}{
\tilde z^HA^{-1}\tilde z}\\
& \leq &\max_{\tilde z \in \bCn } \frac{\tilde z^HX^{-1}\tilde z}{
\tilde z^HA^{-1}\tilde z}\\
& = & \lambda_{\max}(X^{-1}A).
\eeqo
Hence, the Hermitian smoother
\beqo
\hat M^{-1} = \frac{1}{\lambda_{\max}(M^{-1}A)}M^{-1}
\eeqo
satisfies
\beq \label{eq:spec1}
\lambda_{\max}(\hat M^{-1}A) = 1.
\eeq
With Theorem \ref{theo:mg:eig} and $X^{-1} = \hat M^{-1}$ we then have
\beqo
\lambda_{\max} ((B_{TG}A) = 1,
\eeqo
thus
\beqo
\rho(E_{TG}) = 1 - \lambda_{\min } (B_{TG}A).
\eeqo
Note that \eqref{eq:spec1} is equivalent to $\hat M - A $ being positive
semidefinite. This discussion leads to the following corollary.
%The matrix $X^{-1}$ is just the smoother $M^{-H}$.
\begin{corollary} \label{coro:two}
Let $A\inCnn$ be Hermitian positive definite. Let $ M \inCnn$ such $M - A$ is
Hermitian positive definite.
Let $X_{TG}^{-1} = M^{-1}$.
Let $
\tilde \lambda_1 \leq \tilde \lambda_2 \leq \ldots \leq \tilde \lambda_n $
be the eigenvalues of $X_{TG}^{-1}A$ and let $x_i$, $i = 1, \ldots, n$, be
the corresponding eigenvectors. Then
\beq \label{eq:min.case2}
\min_{\substack{P \in \Cnr \\ \rank(P)=r}}\rho(E_{TG}) = 1 - \tilde
\lambda_{r+1}.
\eeq
An optimal interpolation operator is given by
\beq \label{eq:min.case2int}
P_{\mathrm{opt}} = [x_{1}, \ldots , x_r].
\eeq
\end{corollary}
\begin{proof}
The matrix $X_{TG}^{-1} = M^{-1}$ is Hermitian positive definite. Moreover,
since $M - A$ is also Hermitian positive definite the eigenvalues of
$X_{TG}^{-1}A$ are less then one. Thus, with Theorem \ref{theo:mg:eig},
$\lambda_{\max}(B_{TG}A) = 1$. So, with Theorem \ref{theo:main} we obtain
\eqref{eq:min.case2} and \eqref{eq:min.case2int}.
\end{proof}
Now we will compare the optimal interpolation with respect to the $A$-norm as
given in Corollary \ref{coro:one}, with the optimal interpolation with respect
to the spectral radius as given in Corollary \ref{coro:two}. Using $M=M^H$ and
$M - A$ Hermitian positive definite, the vectors used in Corollary
\ref{coro:one}
are eigenvectors of
\beqo
X^{-1}_{STG}A = 2M^{-1}A - M^{-1}AM^{-1}A,
\eeqo
while in Corollary \ref{coro:one} we use the eigenvectors of
\beqo
X^{-1}_{TG}A = M^{-1}A.
\eeqo
But $X^{-1}_{STG}A$ is just a polynomial in $M^{-1}A$ , where the polynomial
is given by
\beq \label{eq:pol}
p(t) = 2t - t^2.
\eeq
Thus, the eigenvectors of both matrices are the same. Moreover, the
eigenvalues are related
by the above polynomial. Hence, the eigenvectors corresponding to the
smallest eigenvalues of
$X^{-1}_{STG}A$ are the same eigenvectors that correspond to the smallest
eigenvalues of $X^{-1}_{TG}A$. Hence, the optimal interpolation in Corollary
\ref{coro:one} and Corollary
\ref{coro:two} are the same, if we assume that $M - A$ is Hermitian positive
definite.
Next, let us have a closer look to the non-symmetric two grid method and avoid
scaling. We assume that
the smoother $M$ is Hermitian and leads to a convergent scheme, i.e.
\beq \label{eq:smoother:con:}
\rho(I - M^{-1}A) < 1,
\eeq
which implies $\sigma(M^{-1}A) \subset (0,2).$ Thus, for the matrix $E_{TG}$
we have as above
\beqo
\rho(E_{TG}) = 1 - \lambda_{\min}(B_{TG}^{-1}A) < 1
\ \ \mbox{or} \ \
\rho(E_{TG}) = -(1 - \lambda_{\max}(B_{TG}^{-1}A)) < 1.
\eeqo
Let
\beqo
Z = \tilde U^HX_{TG}^{-1}\tilde U (\tilde U^HA^{-1}\tilde U)^{-1}).
\eeqo
Then we have $\sigma(Z) \subset (0,2)$ and with Theorem \ref{theo:mg:eig}
\beqo
\sigma(E_{TG}) = \{0\} \cup \sigma(I-Z).
\eeqo
But $\sigma(I-Z) \subset (-1,1) $. To minimize the spectral radius of $E_{TG}$
over all interpolation we consider the matrix $(I - Z)^2$. Our next theorem
deals with this case.
\begin{theorem} \label{theo:main2}
Let $A\inCnn$ be Hermitian positive definite, and let $ M \inCnn$ be
Hermitian
such $\rho(I - M^{-1}A) < 1$.
Let $X_{TG}^{-1} = M^{-1}$,
and let $\{(\lambda_i,y_i)\}_{i=1}^n$ be the eigenpairs of $(I -
X_{TG}^{-1}A)^2$ with $
\hat \lambda_1 \leq \hat \lambda_2 \leq \ldots \leq \hat \lambda_n $. Then
\beq \label{eq:min.case3}
\min_{\substack{P \in \Cnr \\ \rank(P)=r}}\rho(E_{TG}) = (\hat
\lambda_{n-r})^{\frac{1}{2}}.
\eeq
An optimal interpolation operator is given by
\beq \label{eq:min.case3int}
P_{\mathrm{opt}} = [y_{n-r+1}, \ldots , y_n].
\eeq
\end{theorem}
\begin{proof}
Using the theorem of Courant and Fischer and Theorem \ref{theo:mg:eig} we have
\beqo
& & \min_{\tilde U \innbCnnmr, \, \tilde U^H \tilde U=I} \lambda_{\max}((I -Z)^2) \\
& = & \min_{\tilde U \innbCnnmr, \, \tilde U^H \tilde U=I}
\lambda_{\max}((\tilde U^HA^{-1}\tilde U -
\tilde
U^HX_{TG}^{-1}\tilde U) (\tilde U^HA^{-1}\tilde U)^{-1})^2)\\
& = & \min_{\tilde U \innbCnnmr, \, \tilde U^H \tilde U=I} \max_{z \in \bC
^{n-r}} ((z^H(\tilde U^HA^{-1}\tilde U -
\tilde U^HX_{TG}^{-1}\tilde U)z) (z^H\tilde U^HA^{-1}\tilde Uz)^{-1})^2)\\
& = & \min_{\tilde U \innbCnnmr, \, \tilde U^H \tilde U=I} \max_{y \in \ran
(\tilde U)} ((y^H(A^{-1} -
X_{TG}^{-1})y) (y^HA^{-1}y)^{-1})^2)\\
& = & \hat \lambda_{n-r}.
\eeqo
The optimal interpolation is then given by \eqref{eq:min.case3int}.
\end{proof}
Note that the above Theorem \ref{theo:main2} and Corollary \ref{coro:one}
correspond to
clear statements: the optimal interpolation operators are given
by
those
eigenvectors for which the smoothing is slowest to converge.
\section{The optimal interpolation with respect to the condition number}
Note that for symmetric multigrid where $M + M^H - A$ is Hermitian positive
definite the largest eigenvalue of
$B_{STG}A$ is one (see e.g. \cite{Not15}). As seen in the proof of Corollary
\ref{coro:two}, the same holds for $B_{TG}A$ when we assume that $M - A$ is
Hermitian positive definite. The later
assumption can be obtained by scaling, however, this scaling affects the
spectral radius of the
error propagation matrix. But for the condition number of the multigrid
preconditioned system, this scaling has no effect.
Theorem \ref{theo:mg:eig} characterizes the spectrum of $B_{STG}A$ and
$B_{TG}A$. Following the arguments above, where we found optimal
interpolation operators, such that
$\lambda_{\min}(B_{STG}A)$ and $\lambda_{\min}(B_{TG}A)$ are maximal, we obtain
that the same interpolation operators are optimal with respect to the condition
number $\kappa$ of the preconditioned system. This leads to the next result.
\begin{theorem}
Let $A\inCnn$ be Hermitian positive definite. Let $ M \inCnn$ such $M + M^H -
A$ is Hermitian positive definite.
Let $X_{STG}^{-1}$ be as in \eqref{defX}.
Let $\{(\lambda_i,v_i)\}_{i=1}^n$ be the eigenpairs of $X_{STG}^{-1}A$, where
$
\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n $. Then
\beq
\min_{\substack{P \in \Cnr \\ \rank(P)=r}} \kappa(B_{STG}A) =
\frac{1}{\lambda_{r+1}}.
\eeq
An optimal interpolation operator is given by
\[
P_{\mathrm{opt}} = [v_{1}, \ldots , v_r].
\]
\end{theorem}
Our final result gives the optimal interpolation operator for the non-symmetric
two-grid
method with respect to the condition number $\kappa$.