-
Notifications
You must be signed in to change notification settings - Fork 337
/
feature_tfeat.py
112 lines (93 loc) · 3.9 KB
/
feature_tfeat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import config
config.cfg.set_lib('tfeat')
import os
import numpy as np
import math
import cv2
import time
import torchvision as tv
import torch
import tfeat_model
import tfeat_utils
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from utils_features import extract_patches_array, extract_patches_array_cpp
kVerbose = True
# interface for pySLAM
class TfeatFeature2D:
def __init__(self, do_cuda=True):
print('Using TfeatFeature2D')
self.model_base_path = config.cfg.root_folder + '/thirdparty/tfeat/'
self.do_cuda = do_cuda & torch.cuda.is_available()
print('cuda:',self.do_cuda)
device = torch.device("cuda:0" if self.do_cuda else "cpu")
torch.set_grad_enabled(False)
# mag_factor is how many times the original keypoint scale
# is enlarged to generate a patch from a keypoint
self.mag_factor = 3
print('==> Loading pre-trained network.')
#init tfeat and load the trained weights
self.model = tfeat_model.TNet()
self.models_path = self.model_base_path + 'pretrained-models'
self.net_name = 'tfeat-liberty'
self.model.load_state_dict(torch.load(os.path.join(self.models_path,self.net_name+".params")))
if self.do_cuda:
self.model.cuda()
print('Extracting on GPU')
else:
print('Extracting on CPU')
self.model = model.cpu()
self.model.eval()
print('==> Successfully loaded pre-trained network.')
def compute_des(self, patches):
patches = torch.from_numpy(patches).float()
patches = torch.unsqueeze(patches,1)
if self.do_cuda:
patches = patches.cuda()
with torch.no_grad():
descrs = self.model(patches)
return descrs.detach().cpu().numpy().reshape(-1, 128)
def compute(self, frame, kps, mask=None): #mask is a fake input
#print('kps: ', kps)
if len(kps)>0:
#des = tfeat_utils.describe_opencv(self.model, frame, kps, 32, self.mag_factor)
# extract the keypoint patches
#t = time.time()
if False:
# use python code
patches = extract_patches_array(frame, kps, patch_size=32, mag_factor=self.mag_factor)
else:
# use faster cpp code
patches = extract_patches_array_cpp(frame, kps, patch_size=32, mag_factor=self.mag_factor)
patches = np.asarray(patches)
#if kVerbose:
# print('patches.shape:',patches.shape)
#if kVerbose:
# print('patch elapsed: ', time.time()-t)
# compute descriptor by feeeding the full patch tensor to the network
des = self.compute_des(patches)
else:
des = []
if kVerbose:
print('descriptor: TFEAT, #features: ', len(kps), ', frame res: ', frame.shape[0:2])
return kps, des