This codebase contains PyTorch implementation of the paper:
NePTuNe: Neural Powered Tucker Network. Shashank Sonkar, Arzoo Katiyar, and Richard G. Baraniuk. [Paper]
The codebase is inspired from TuckER's github repository. TuckER is the PyTorch implementation of the paper:
TuckER: Tensor Factorization for Knowledge Graph Completion. Ivana Balažević, Carl Allen, and Timothy M. Hospedales. Empirical Methods in Natural Language Processing (EMNLP), 2019. [Paper]
Dataset | MRR | Hits@1 | Hits@3 | Hits@10 |
---|---|---|---|---|
FB15k-237 | 0.366 | 0.272 | 0.404 | 0.547 |
WN18RR | 0.491 | 0.455 | 0.507 | 0.557 |
To run the model on FB15k-237 dataset, execute the following command:
cd neptune-fb15k237/
CUDA_VISIBLE_DEVICES=0 python -u main.py
--dataset FB15k-237
--num_iterations 1500
--batch_size 128
--lr 0.0005 --dr 1.0
--edim 200 --rdim 150
--input_dropout 0.3
--hidden_dropout1 0.2
--hidden_dropout2 0.4
--label_smoothing 0.1
To run the model on WN18RR dataset, execute the following command:
cd neptune-wn18rr/
CUDA_VISIBLE_DEVICES=0 python -u main.py
--dataset WN18RR
--num_iterations 2500
--batch_size 128
--lr 0.003 --dr 1.0
--edim 500 --rdim 30
--input_dropout 0.1
--hidden_dropout1 0.2
--hidden_dropout2 0.7
--label_smoothing 0.1
Note that WN18RR uses inverse relations, while FB15k-237 does not.
The codebase is implemented in Python 3.6.6. Required packages are:
numpy 1.15.1
pytorch 1.0.1