-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_recognize.py
252 lines (197 loc) · 9.96 KB
/
face_recognize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import dlib # 人脸识别的库dlib
import numpy as np # 数据处理的库numpy
import cv2 # 图像处理的库OpenCv
import pandas as pd # 数据处理的库Pandas
from PIL import Image, ImageDraw, ImageFont
import wx
import os
import csv
import datetime
import _thread
# face recognition model, the object maps human faces into 128D vectors
facerec = dlib.face_recognition_model_v1("model/dlib_face_recognition_resnet_model_v1.dat")
# Dlib 检测器
detector = dlib.get_frontal_face_detector()
# Dlib 预测器
#predictor = dlib.shape_predictor('model/shape_predictor_68_face_landmarks.dat')
# 自己训练的预测器
predictor = dlib.shape_predictor('train_shape_detector/predictor.dat')
loading = 'icon/loading.png'
rec_fail = 'icon/rec_fail.png'
rec_repeat = 'icon/rec_repeat.png'
rec_success = 'icon/rec_success.png'
path_logcat_csv = "data/logcat.csv"
def read_csv_to_recoders():
recodes = []
if os.path.exists(path_logcat_csv):
with open(path_logcat_csv, "r", newline="") as csvfiler:
reader = csv.reader(csvfiler)
for row in reader:
recodes.append(row) # 包括header
else:
with open(path_logcat_csv, "w", newline="") as csvfilew:
writer = csv.writer(csvfilew)
header = ["姓名", "日期", "时间"]
writer.writerow(header)
return recodes
pass
# 计算两个向量间的欧式距离
def return_euclidean_distance(feature_1, feature_2):
feature_1 = np.array(feature_1)
feature_2 = np.array(feature_2)
dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
print("欧式距离: ", dist)
if dist > 0.4:
return "diff"
else:
return "same"
# 处理存放所有人脸特征的csv
path_feature_known_csv = "data/feature_all.csv"
# path_features_known_csv= "/media/con/data/code/python/P_dlib_face_reco/data/csvs/features_all.csv"
csv_rd = pd.read_csv(path_feature_known_csv, header=None, encoding='gbk')
# 存储的特征人脸个数
# print(csv_rd.shape)
# (2,129)
# 用来存放所有录入人脸特征的数组
features_known_arr = []
# print("s0",csv_rd.shape[0],"s1",csv_rd.shape[1])
for i in range(csv_rd.shape[0]):
features_someone_arr = []
for j in range(0, len(csv_rd.ix[i, :])):
features_someone_arr.append(csv_rd.ix[i, :][j])
# print(features_someone_arr)
features_known_arr.append(features_someone_arr)
print("数据库人脸数:", len(features_known_arr))
# 返回一张图像多张人脸的128D特征 只返回一张人脸
def get_128d_features(img_gray):
dets = detector(img_gray, 1)
shape = predictor(img_gray, dets[0])
face_des = facerec.compute_face_descriptor(img_gray, shape)
return face_des
# if len(dets) != 0:
# face_des = []
# for i in range(len(dets)):
# shape = predictor(img_gray, dets[i])
# face_des.append(facerec.compute_face_descriptor(img_gray, shape))
# else:
# face_des = []
# return face_des[0]
class RecognizeUi(wx.Frame):
def __init__(self, superion):
wx.Frame.__init__(self, parent=superion, title="人脸识别", size=(800, 590),
style=wx.DEFAULT_FRAME_STYLE | wx.STAY_ON_TOP)
self.SetBackgroundColour('white')
self.Center()
self.OpenCapButton = wx.Button(parent=self, pos=(50, 120), size=(90, 60), label='开始/重新识别')
self.resultText = wx.StaticText(parent=self, style=wx.ALIGN_CENTER_VERTICAL, pos=(10, 320), size=(90, 60),
label="来访天数:0")
self.resultText.SetBackgroundColour('white')
self.resultText.SetForegroundColour('blue')
font = wx.Font(14, wx.DECORATIVE, wx.ITALIC, wx.NORMAL)
self.resultText.SetFont(font)
self.rec_day_num = 1
# 封面图片
self.image_loading = wx.Image(loading, wx.BITMAP_TYPE_ANY).Scale(600, 480)
self.image_fail = wx.Image(rec_fail, wx.BITMAP_TYPE_ANY).Scale(600, 480)
self.image_repeat = wx.Image(rec_repeat, wx.BITMAP_TYPE_ANY).Scale(600, 480)
self.image_success = wx.Image(rec_success, wx.BITMAP_TYPE_ANY).Scale(600, 480)
# 显示图片
self.bmp = wx.StaticBitmap(parent=self, pos=(200, 20), bitmap=wx.Bitmap(self.image_loading))
self.Bind(wx.EVT_BUTTON, self.OnOpenCapButtonClicked, self.OpenCapButton)
def OnOpenCapButtonClicked(self, event):
"""使用多线程,子线程运行后台的程序,主线程更新前台的UI,这样不会互相影响"""
# 创建子线程,按钮调用这个方法,
_thread.start_new_thread(self._open_cap, (event,))
def _open_cap(self, event):
# 创建 cv2 摄像头对象
self.cap = cv2.VideoCapture(0)
# cap.set(propId, value)
# 设置视频参数,propId设置的视频参数,value设置的参数值
self.cap.set(3, 480)
# cap是否初始化成功
while self.cap.isOpened():
# cap.read()
# 返回两个值:
# 一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
# 图像对象,图像的三维矩阵
flag, im_rd = self.cap.read()
# 每帧数据延时1ms,延时为0读取的是静态帧
kk = cv2.waitKey(1)
# 人脸数 dets
dets = detector(im_rd, 1)
# 待会要写的字体
font = cv2.FONT_HERSHEY_SIMPLEX
# 存储人脸名字和位置的两个 list
# list 1 (dets): store the name of faces Jack unknown unknown Mary
# list 2 (pos_namelist): store the positions of faces 12,1 1,21 1,13 31,1
# 人脸的名字
name = ''
pos = ''
# pos_namelist = []
# name_namelist = []
if len(dets) != 0:
# 检测到人脸
start = datetime.datetime.now()
# 获取当前捕获到的图像的所有人脸的特征,存储到 features_cap_arr
features_cap = ''
shape = predictor(im_rd, dets[0])
features_cap = facerec.compute_face_descriptor(im_rd, shape)
# 遍历捕获到的图像中所有的人脸
# 让人名跟随在矩形框的下方
# 确定人名的位置坐标
# 先默认所有人不认识,是 unknown
name = "unknown"
# 每个捕获人脸的名字坐标
pos = tuple([(int)((dets[0].left() + dets[0].right()) / 2) - 50
, dets[0].bottom() + 20])
# 对于某张人脸,遍历所有存储的人脸特征
for i in range(len(features_known_arr)):
# 将某张人脸与存储的所有人脸数据进行比对
self.rec_day_num = 0;
compare = return_euclidean_distance(features_cap, features_known_arr[i][0:-1])
if compare == "same": # 找到了相似脸
end = datetime.datetime.now()
print(end - start)
name = features_known_arr[i][-1]
recoder = []
recoder.append(name)
localtime = datetime.datetime.now()
date = str(localtime.year) + "/" + str(localtime.month) + "/" + str(localtime.day)
time = str(localtime.hour) + ":" + str(localtime.minute) + ":" + str(localtime.second)
recoder.append(date)
recoder.append(time)
recoders = read_csv_to_recoders()
for item in recoders:
if item[0] == recoder[0]:
self.rec_day_num += 1
#self.resultText.SetLabel("来访天数:" + str(self.rec_day_num))
self.resultText.SetLabel(
"来访天数:" + str(self.rec_day_num) + "\n来访姓名:" + name + "\n来访日期:" + recoder[1] + "\n来访时间 " +
recoder[2])
for item in recoders:
if item[0] == recoder[0] and item[1] == recoder[1]:
#wx.MessageBox(message=name + "您好,今天已经识别到了\n请勿重复识别", caption="温馨提示")
self.bmp.SetBitmap(wx.Bitmap(self.image_repeat))
_thread.exit()
# wx.MessageBox(message="已成功识别" + name + "\n来访时间:" + recoder[1] + " " + recoder[2],
# caption="温馨提示")
self.bmp.SetBitmap(wx.Bitmap(self.image_success))
self.rec_day_num += 1
self.resultText.SetLabel(
"来访天数:" + str(self.rec_day_num) + "\n来访姓名:" + name + "\n来访日期:" + recoder[1] + "\n来访时间 " + recoder[2])
with open(path_logcat_csv, "a+", newline="") as csvfilew:
writer = csv.writer(csvfilew)
writer.writerow(recoder)
_thread.exit()
# print(features_known_arr[i][-1])
# 绘制矩形框
cv2.rectangle(im_rd, tuple([dets[0].left(), dets[0].top()]), tuple([dets[0].right(), dets[0].bottom()]),
(255, 0, 0), 2)
# 写人脸名字
cv2.putText(im_rd, name, pos, font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
cv2.putText(im_rd, "Faces: " + str(len(dets)), (50, 80), font, 1, (255, 0, 0), 1, cv2.LINE_AA)
height, width = im_rd.shape[:2]
image1 = cv2.cvtColor(im_rd, cv2.COLOR_BGR2RGB)
pic = wx.Bitmap.FromBuffer(width, height, image1)
# 显示图片在panel上
self.bmp.SetBitmap(pic)