-
Notifications
You must be signed in to change notification settings - Fork 19
/
train.py
133 lines (100 loc) · 3.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gzip
import random
import tqdm
import numpy as np
import torch
from torch.optim import Adam
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset
from accelerate import Accelerator
from block_recurrent_transformer_pytorch import BlockRecurrentTransformer, RecurrentTrainerWrapper
# constants
NUM_BATCHES = int(1e5)
BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 1e-4
VALIDATE_EVERY = 100
PRIME_LENGTH = 128
GENERATE_EVERY = 250
GENERATE_LENGTH = 2048
SEQ_LEN = 2048
# helpers
def cycle(loader):
while True:
for data in loader:
yield data
def decode_token(token):
return str(chr(max(32, token)))
def decode_tokens(tokens):
return "".join(list(map(decode_token, tokens)))
# accelerator
accelerator = Accelerator()
device = accelerator.device
acc_print = accelerator.print
# instantiate palm
model = BlockRecurrentTransformer(
num_tokens = 256,
dim = 512,
depth = 6,
dim_head = 64,
heads = 8,
max_seq_len = 1024,
block_width = 512,
num_state_vectors = 512,
recurrent_layers = (4,),
use_flash_attn = True
)
train_wrapper = RecurrentTrainerWrapper(
model,
xl_memories_dropout = 0.1,
state_dropout = 0.1,
)
model.to(device)
# prepare enwik8 data
with gzip.open("./data/enwik8.gz") as file:
data = np.frombuffer(file.read(int(95e6)), dtype=np.uint8).copy()
np_train, np_valid = np.split(data, [int(90e6)])
data_train, data_val = torch.from_numpy(np_train), torch.from_numpy(np_valid)
class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len
def __getitem__(self, index):
rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,))
full_seq = self.data[rand_start : rand_start + self.seq_len + 1].long()
return full_seq.to(device)
def __len__(self):
return self.data.size(0) // self.seq_len
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE))
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))
# optimizer
optim = Adam(model.parameters(), lr = LEARNING_RATE)
model, optim, train_loader, val_loader = accelerator.prepare(
model, optim, train_loader, val_loader
)
# training
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
model.train()
for _ in range(GRADIENT_ACCUMULATE_EVERY):
loss = train_wrapper(next(train_loader))
accelerator.backward(loss / GRADIENT_ACCUMULATE_EVERY)
acc_print(f"training loss: {loss.item()}")
accelerator.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()
if i % VALIDATE_EVERY == 0:
model.eval()
with torch.no_grad():
loss = train_wrapper(next(val_loader))
acc_print(f"validation loss: {loss.item()}")
if i % GENERATE_EVERY == 0:
model.eval()
inp = random.choice(val_dataset)[:PRIME_LENGTH]
prime = decode_tokens(inp)
acc_print(f"%s \n\n %s", (prime, "*" * 100))
sample = train_wrapper.generate(inp[None, ...], length = GENERATE_LENGTH)
output_str = decode_tokens(sample[0])
acc_print(output_str, "\n")