From 5fc5a603f33cfe3b2e3579a4c17683e98baf4c3a Mon Sep 17 00:00:00 2001 From: lucas-nelson-uiuc Date: Fri, 27 Dec 2024 13:38:03 -0600 Subject: [PATCH] tests: update filters tests --- tests/core/test_filters.py | 254 +++++++++++++++++++++++++++++++------ 1 file changed, 213 insertions(+), 41 deletions(-) diff --git a/tests/core/test_filters.py b/tests/core/test_filters.py index ee644b6..398f9a4 100644 --- a/tests/core/test_filters.py +++ b/tests/core/test_filters.py @@ -1,49 +1,221 @@ -# TODO: enable pyspark.testing at some point -# from pyspark.testing import assertDataFrameEqual +import datetime + +from pyspark.sql import functions as F +from pyspark.testing import assertDataFrameEqual +from tidy_tools.core.filter import filter_elements +from tidy_tools.core.filter import filter_nulls +from tidy_tools.core.filter import filter_range +from tidy_tools.core.filter import filter_regex class TestFilters: def test_filter_nulls(self, eits_data): - # tidy_data = TidyDataFrame(eits_data) - # tidy_data.filter_nulls = filter_nulls - - # # test `filter_nulls` is equivalent to `DataFrame.na.drop` - # assert eits_data.na.drop(how="any").count() == tidy_data.filter_nulls().count() - - # assert ( - # eits_data.na.drop(how="all").count() - # == tidy_data.filter_nulls(strict=True).count() - # ) - - # columns = [ - # "title", - # "release_year", - # "release_date", - # "recorded_at", - # "tracks", - # "duration_minutes", - # "rating", - # ] - # assert ( - # eits_data.na.drop(subset=[columns]).count() - # == tidy_data.filter_nulls(*columns).count() - # ) - - # columns = ["formats", "producer", "ceritifed_gold", "comments"] - # assert ( - # eits_data.na.drop(subset=[columns]).count() - # == tidy_data.filter_nulls(*columns).count() - # ) - assert True + # hypothesis: `strict` parameter behaves like `how` parameter + assertDataFrameEqual(eits_data.na.drop(how="any"), filter_nulls(eits_data)) + assertDataFrameEqual( + eits_data.na.drop(how="all"), filter_nulls(eits_data, strict=True) + ) + + # hypothesis: specifying columns behaves same as `subset` + columns = [ + "title", + "release_year", + "release_date", + "recorded_at", + "tracks", + "duration_minutes", + "rating", + ] + assertDataFrameEqual( + eits_data.na.drop(subset=columns), filter_nulls(eits_data, *columns) + ) + assertDataFrameEqual( + eits_data.na.drop(subset=columns, how="all"), + filter_nulls(eits_data, *columns, strict=True), + ) def test_filter_regex(self, eits_data): - # tidy_data = TidyDataFrame(eits_data) - # eits_data.filter_nulls = filter_nulls - # tidy_data.filter_nulls = filter_nulls - assert True + # hypothesis: `filter_regex` constructs valid substring filtering queries + TEST_PATTERN: str = r"," + assertDataFrameEqual( + eits_data.filter(F.col("title").rlike(TEST_PATTERN)), + filter_regex(eits_data, "title", pattern=TEST_PATTERN), + ) + assertDataFrameEqual( + eits_data.filter( + F.col("title").rlike(TEST_PATTERN) + | F.col("comments").rlike(TEST_PATTERN) + ), + filter_regex(eits_data, "title", "comments", pattern=TEST_PATTERN), + ) + # hypothesis: `filter_regex` can handle logical operations + assertDataFrameEqual( + eits_data.filter( + F.col("title").rlike(TEST_PATTERN) + & F.col("comments").rlike(TEST_PATTERN) + ), + filter_regex( + eits_data, "title", "comments", pattern=TEST_PATTERN, strict=True + ), + ) + assertDataFrameEqual( + ~( + eits_data.filter( + F.col("title").rlike(TEST_PATTERN) + | F.col("comments").rlike(TEST_PATTERN) + ) + ), + filter_regex( + eits_data, "title", "comments", pattern=TEST_PATTERN, invert=True + ), + ) + assertDataFrameEqual( + ~( + eits_data.filter( + F.col("title").rlike(TEST_PATTERN) + & F.col("comments").rlike(TEST_PATTERN) + ) + ), + filter_regex( + eits_data, + "title", + "comments", + pattern=TEST_PATTERN, + strict=True, + invert=True, + ), + ) def test_filter_elements(self, eits_data): - # tidy_data = TidyDataFrame(eits_data) - # eits_data.filter_nulls = filter_nulls - # tidy_data.filter_nulls = filter_nulls - assert True + TEST_ELEMENTS: list[str] = [ + ["CD", "Vinyl"], + ["CD", "Digital"], + "john congleton", + ] + assertDataFrameEqual( + eits_data.filter(F.col("formats").isin(TEST_ELEMENTS)), + filter_elements(eits_data, "formats", elements=TEST_ELEMENTS), + ) + assertDataFrameEqual( + eits_data.filter( + F.col("formats").isin(TEST_ELEMENTS) + | F.col("producer").isin(TEST_ELEMENTS) + ), + filter_elements(eits_data, "formats", "producer", elements=TEST_ELEMENTS), + ) + assertDataFrameEqual( + eits_data.filter( + F.col("formats").isin(TEST_ELEMENTS) + & F.col("producer").isin(TEST_ELEMENTS) + ), + filter_elements( + eits_data, "formats", "producer", elements=TEST_ELEMENTS, strict=True + ), + ) + assertDataFrameEqual( + ~( + eits_data.filter( + F.col("formats").isin(TEST_ELEMENTS) + | F.col("producer").isin(TEST_ELEMENTS) + ) + ), + filter_elements( + eits_data, "formats", "producer", elements=TEST_ELEMENTS, invert=True + ), + ) + assertDataFrameEqual( + ~( + eits_data.filter( + F.col("formats").isin(TEST_ELEMENTS) + & F.col("producer").isin(TEST_ELEMENTS) + ) + ), + filter_elements( + eits_data, + "formats", + "producer", + elements=TEST_ELEMENTS, + strict=True, + invert=True, + ), + ) + + def test_filter_range(self, eits_data): + TEST_LOWER_BOUND: datetime.date = datetime.date(2001, 1, 1) + TEST_UPPER_BOUND: datetime.date = datetime.date(2015, 12, 31) + + assertDataFrameEqual( + eits_data.filter( + F.col("release_date").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) + ), + filter_range( + eits_data, + "release_date", + lower_bound=TEST_LOWER_BOUND, + upper_bound=TEST_UPPER_BOUND, + ), + ) + + assertDataFrameEqual( + eits_data.filter( + F.col("release_date").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) + | F.col("recorded_at").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) + ), + filter_range( + eits_data, + "release_date", + "recorded_at", + lower_bound=TEST_LOWER_BOUND, + upper_bound=TEST_UPPER_BOUND, + ), + ) + + assertDataFrameEqual( + eits_data.filter( + F.col("release_date").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) + & F.col("recorded_at").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) + ), + filter_range( + eits_data, + "release_date", + "recorded_at", + lower_bound=TEST_LOWER_BOUND, + upper_bound=TEST_UPPER_BOUND, + strict=True, + ), + ) + + assertDataFrameEqual( + eits_data.filter( + ~( + F.col("release_date").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) + | F.col("recorded_at").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) + ) + ), + filter_range( + eits_data, + "release_date", + "recorded_at", + lower_bound=TEST_LOWER_BOUND, + upper_bound=TEST_UPPER_BOUND, + invert=True, + ), + ) + + assertDataFrameEqual( + eits_data.filter( + ~( + F.col("release_date").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) + & F.col("recorded_at").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) + ) + ), + filter_range( + eits_data, + "release_date", + "recorded_at", + lower_bound=TEST_LOWER_BOUND, + upper_bound=TEST_UPPER_BOUND, + strict=True, + invert=True, + ), + )