forked from LSSTDESC/LSSTDarkMatter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerateInstCat.py
executable file
·312 lines (257 loc) · 12.7 KB
/
generateInstCat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#!/usr/bin/env python
"""
This is a simple tool to simulate mock stream catalog
for image generation with imSim.
Need ugali and dsphsim to run the code (see README.md)
The stream is generated as a stack of a line of dwarf galaxies
with Gaussian density profile. It is close to uniform along the
stream except for edges of the stream.
Limits of this version:
1. Only one-band generation at a time. Need to modify instcat
to change to another band. TODO: Make a two-band version for CMD
similar to satsim
2. Assume stream is east-west oriented. Input Position Angle
is currently ignored. TODO: make P.A. an effective input
3. Total luminosity is calculated surface_brightness*(width*length).
In reality, the stream is not uniform at the edge of the stream,
so this is just an approximation.
4. When the simulated dwarf is too bright (Mv < -13) or
too faint (Mv > 2), the catalog will not be generated
Inputs:
(check --help)
distance (kpc) or distance_module
surface brightness (mag/arcsec^2)
width (deg) or angular width (pc)
length (deg) or angular length (pc)
ra, dec
example:
python generateInstCat.py --surface_brightness=29.00 --angular_width=0.100000 \
--angular_length=0.2 --distance=100.00 'catalogs/sb_29_width_0.1000deg_d_100kpc.txt'
"""
import os,sys
import numpy as np
import logging
import scipy.stats as stats
import dsphsim
from dsphsim.dwarf import Dwarf
from dsphsim.instruments import factory as instrumentFactory
from dsphsim.tactician import factory as tacticianFactory
from dsphsim.velocity import PhysicalVelocity
import instcat
class Simulator(object):
@staticmethod
def simulate(dwarf,**kwargs):
""" Simulate dwarf galaxy """
# Set the second band to 'i' (matches CaT lines)
dwarf.band_1 = 'g'; dwarf.band_2 = 'r'
mag_1,mag_2,ra,dec,velocity = dwarf.simulate()
angsep = dwarf.kernel.angsep(ra,dec)
rproj = dwarf.distance * np.tan(np.radians(angsep))
idx = np.arange(1,len(mag_1)+1)
# Do we also want to save vsyserr as VSYSERR?
names = ['ID','RA','DEC',
'MAG_%s'%dwarf.band_1.upper(),'MAG_%s'%dwarf.band_2.upper(),
'ANGSEP','RPROJ']
data = [idx, ra, dec,
mag_1, mag_2,
angsep, rproj]
return np.rec.fromarrays(data,names=names)
@classmethod
def parser(cls):
import argparse
description = "Simulate the observable properties of a dwarf galaxy."
formatter = argparse.ArgumentDefaultsHelpFormatter
parser = argparse.ArgumentParser(description=description,
formatter_class=formatter)
parser.add_argument('outfile',nargs='?',
help="optional output file")
parser.add_argument('--seed',type=int,default=None,
help="random seed")
parser.add_argument('-v','--verbose',action='store_true',
help="verbose output")
parser.add_argument('-n','--nsims',type=int,default=1,
help="number of simulations")
group = parser.add_argument_group('Kinematic')
group.add_argument('--kinematics',type=str,default='Gaussian',
help='kinematic distribution function')
group.add_argument('--vmean',type=float,default=60.,
help='mean systemic velocity (km/s)')
# should be mutually exclusive with vmax and rs
egroup = group.add_mutually_exclusive_group()
egroup.add_argument('--vdisp',type=float,default=3.3,
help='gaussian velocity dispersion (km/s)')
egroup.add_argument('--vmax',type=float,default=10.0,
help='maximum circular velocity (km/s)')
egroup.add_argument('--rhos',type=float,default=None,
help='maximum circular velocity (Msun/pc^3)')
egroup = group.add_mutually_exclusive_group()
egroup.add_argument('--rvmax',type=float,default=0.4,
help='radius of max circular velocity (kpc)')
# ADW: it would be nice to remove this...
egroup.add_argument('--rs',type=float,default=None,
help='scale radius for NFW halo (kpc)')
group = parser.add_argument_group('Isochrone')
group.add_argument('--isochrone',type=str,default='Bressan2012',
help='isochrone type')
group.add_argument('--age',type=float,default=12.0,
help='age of stellar population (Gyr)')
group.add_argument('--metallicity',type=float,default=2e-4,
help='metallicity of stellar population')
# Distance modulus and distance are mutually exclusive
egroup = group.add_mutually_exclusive_group()
egroup.add_argument('--distance_modulus',type=float,default=17.5,
help='distance modulus')
egroup.add_argument('--distance',type=float,default=None,
help='distance to satellite (kpc)')
group = parser.add_argument_group('Kernel')
group.add_argument('--kernel',type=str,default='Gaussian',
help='kernel type')
group.add_argument('--ra',type=float,default=54.0,
help='centroid right acension (deg)')
group.add_argument('--dec',type=float,default=-54.0,
help='centroid declination (deg)')
group.add_argument('--position_angle',type=float,default=0.0,
help='position angle east-of-north (deg)')
# ignore Position Angle for now, assuming the stream is east-west oriented.
# this code will not using the following parameters:
# stellar_mass
# absolute_magnitude
# extension
# ellipticity
# half_light_radius
# Extra terms for streams.
group = parser.add_argument_group('Additional parameters for streams')
group.add_argument('--surface_brightness',type=float,default=30,
help='average surface brightness within the width of stream (mag/arcsec^2)')
egroup = group.add_mutually_exclusive_group()
egroup.add_argument('--angular_width',type=float,default=0.3,
help='angular width (FWHM) of stream (deg)')
egroup.add_argument('--width',type=float,default=None,
help='physical width (FWHM) of stream (pc)')
egroup = group.add_mutually_exclusive_group()
egroup.add_argument('--angular_length',type=float,default=3.,
help='angular length of stream (deg)')
egroup.add_argument('--length',type=float,default=None,
help='physical length of stream (pc)')
# assuming Gaussian across stream.
return parser
if __name__ == "__main__":
parser = Simulator.parser()
args = parser.parse_args()
kwargs = vars(args)
if args.verbose:
logging.getLogger().setLevel(logging.DEBUG)
if args.seed is not None:
np.random.seed(args.seed)
dwarf = Dwarf()
if args.distance == None:
distance_modulus = args.distance_modulus
else:
# Calculate distance modulus from distance in kpc
distance_modulus = 5. * (np.log10(args.distance * 1.e3) - 1.)
print 'distance_modulus', distance_modulus
distance = 10 ** (distance_modulus / 5. + 1) / 1000
print 'distance', distance, 'kpc'
isochrone=Dwarf.createIsochrone(name=args.isochrone, age=args.age,
metallicity=args.metallicity,
distance_modulus=distance_modulus)
dwarf.set_isochrone(isochrone)
if args.width == None:
angular_width = args.angular_width
else:
# Convert physical width to angular width in degrees
angular_width = args.width/(distance*1000) * 180./np.pi
if args.length == None:
angular_length = args.angular_length
else:
# Convert physical length to angular width in degrees
angular_length = args.length/(distance*1000) * 180./np.pi
print 'angular_width:', angular_width, 'deg'
print 'angular_length:', angular_length, 'deg'
print 'width', angular_width*np.pi/180.*(distance*1000), 'pc'
print 'length', angular_length*np.pi/180.*(distance*1000), 'pc'
angular_radius = angular_width / 2.35 # in degree
print 'angular_radius:', angular_radius, 'deg'
ndwarf = int(angular_length/angular_radius)
print 'going to simulate', ndwarf, 'dwarfs'
#convert from surface brightness to absolute magnitude
#this is a simple estimation and need to be modified in the future
area = angular_width * 3600 * angular_length * 3600
apparent_magnitude = args.surface_brightness - 2.5 * np.log10(area)
absolute_magnitude = apparent_magnitude - distance_modulus
print 'stream extension:', area, 'in arcsec^2'
print 'surface brightness', args.surface_brightness
print 'total apparent magnitude', apparent_magnitude
print 'total absolute magnitude', absolute_magnitude
absolute_magnitude_single = absolute_magnitude + 2.5 * np.log10(ndwarf)
print 'single absolute magnitude', absolute_magnitude_single
if absolute_magnitude < -13:
print "WARNING: The simulated dwarfs are too massive and it will take a huge of computer time \
so I'm not going to run it, please change the input parameter"
sys.exit(1)
if absolute_magnitude_single > 2:
print "WARNING: The simulated dwarfs are too faint and it is not physical for stellar population generation \
so I'm not going to run it, please change the input parameter"
sys.exit(1)
#convert from absolute magnitude to stellar mass / richness
from scipy.interpolate import UnivariateSpline
rich = np.logspace(2., 9., 1000)
mag = isochrone.absolute_magnitude(rich)
rich = rich[np.argsort(mag)]
mag = np.sort(mag)
mag_to_rich = UnivariateSpline(mag, rich, s=0.)
dwarf.richness = mag_to_rich(absolute_magnitude_single)
#generate array for the center of ndwarfs
ra_arr = args.ra + np.arange(-(ndwarf-1.)/2, (ndwarf-1.)/2+1., 1.) * angular_radius / np.cos(np.deg2rad(args.dec))
dec_arr = args.dec + np.zeros(ndwarf)
writer = instcat.InstCatWriter()
data_all = [] # initial the big dataset for writing
k = ndwarf #used for reassign the object ID, starting with ndwarf because 0-ndwarf will be for unresolved background
# Write output
if args.outfile:
outfile = args.outfile
if args.nsims > 1:
base, ext = os.path.splitext(outfile)
suffix = '_{:0{width}d}'.format(i + 1, width=len(str(args.nsims)))
outfile = base + suffix + ext
if os.path.exists(outfile): os.remove(outfile)
logging.info("Writing %s..." % outfile)
out = open(outfile, 'w', 1)
else:
out = sys.stdout
kernel = Dwarf.createKernel(name=args.kernel, extension=angular_radius,
ellipticity=0,
position_angle=0,
lon=args.ra, lat=args.dec)
dwarf.set_kernel(kernel)
writer.write_toppart(out, dwarf)
print 'center ra, dec:', dwarf.lon, dwarf.lat
for j in range(args.nsims):
for i in range(ndwarf):
np.random.seed(i) # random seeds to make dwarfs different
kernel=Dwarf.createKernel(name=args.kernel,extension=angular_radius,
ellipticity=0,
position_angle=0,
lon=ra_arr[i],lat=dec_arr[i])
dwarf.set_kernel(kernel)
# Set the kinematic properties
if args.rs is not None: args.rvmax = 2.163*args.rs
if args.rhos is not None: raise Exception('Not implemented')
kinematics=Dwarf.createKinematics(name=args.kinematics,
vdisp=args.vdisp, vmean=args.vmean,
vmax=args.vmax, rvmax=args.rvmax)
dwarf.set_kinematics(kinematics)
logging.debug(str(dwarf))
# Run the simulation
logging.info("Simulating galaxy %i..."%i)
data = Simulator.simulate(dwarf)
data['ID'] = data['ID'] + k
k = data['ID'][-1]
writer.write_middlepart(out,dwarf,data,i)
data_all.append(data)
#print data.shape
print 'each dwarf has a total of', len(data), 'stars (including stars below detection limit)'
print 'the stream has', len(data_all)*len(data), 'stars (including stars below detection limit)'
data_all = np.concatenate(data_all)
writer.write_endpart(out,dwarf,data_all)
out.flush()