diff --git a/python/lsst/pipe/tasks/__init__.py b/python/lsst/pipe/tasks/__init__.py index 0eea61cc15..74b03a216d 100644 --- a/python/lsst/pipe/tasks/__init__.py +++ b/python/lsst/pipe/tasks/__init__.py @@ -1 +1,2 @@ +from .brightStarSubtraction import * from .version import * diff --git a/python/lsst/pipe/tasks/brightStarSubtraction/__init__.py b/python/lsst/pipe/tasks/brightStarSubtraction/__init__.py new file mode 100644 index 0000000000..fb8e3320dc --- /dev/null +++ b/python/lsst/pipe/tasks/brightStarSubtraction/__init__.py @@ -0,0 +1 @@ +from .brightStarCutout import * diff --git a/python/lsst/pipe/tasks/brightStarSubtraction/brightStarCutout.py b/python/lsst/pipe/tasks/brightStarSubtraction/brightStarCutout.py new file mode 100644 index 0000000000..907d9172dd --- /dev/null +++ b/python/lsst/pipe/tasks/brightStarSubtraction/brightStarCutout.py @@ -0,0 +1,407 @@ +# This file is part of pipe_tasks. +# +# Developed for the LSST Data Management System. +# This product includes software developed by the LSST Project +# (https://www.lsst.org). +# See the COPYRIGHT file at the top-level directory of this distribution +# for details of code ownership. +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see . + +"""Extract bright star cutouts; normalize and warp to the same pixel grid.""" + +__all__ = ["BrightStarCutoutConnections", "BrightStarCutoutConfig", "BrightStarCutoutTask"] + +import astropy.units as u +import numpy as np +from astropy.coordinates import SkyCoord +from astropy.table import Table +from lsst.afw.cameraGeom import FIELD_ANGLE, PIXELS +from lsst.afw.detection import FootprintSet, Threshold +from lsst.afw.geom import makeModifiedWcs +from lsst.afw.geom.transformFactory import makeTransform +from lsst.afw.image import ExposureF, PhotoCalib +from lsst.afw.math import WarpingControl, warpImage +from lsst.geom import (AffineTransform, Box2I, Extent2D, Extent2I, Point2D, Point2I, SpherePoint, arcseconds, + floor, radians) +from lsst.meas.algorithms import LoadReferenceObjectsConfig, ReferenceObjectLoader, Stamp, Stamps, WarpedPsf +from lsst.pex.config import ChoiceField, ConfigField, Field, ListField +from lsst.pipe.base import PipelineTask, PipelineTaskConfig, PipelineTaskConnections, Struct +from lsst.pipe.base.connectionTypes import Input, Output, PrerequisiteInput +from lsst.utils.timer import timeMethod + + +class BrightStarCutoutConnections( + PipelineTaskConnections, + dimensions=("instrument", "visit", "detector"), +): + """Connections for BrightStarCutoutTask.""" + + refCat = PrerequisiteInput( + doc="Reference catalog that contains bright star positions.", + name="gaia_dr3_20230707", + storageClass="SimpleCatalog", + dimensions=("skypix",), + multiple=True, + deferLoad=True, + ) + inputExposure = Input( + doc="Input exposure from which to extract bright star stamp cutouts.", + name="calexp", + storageClass="ExposureF", + dimensions=("visit", "detector"), + ) + inputBackground = Input( + doc="Background model for the input exposure.", + name="calexpBackground", + storageClass="Background", + dimensions=("visit", "detector"), + ) + brightStarStamps = Output( + doc="Set of preprocessed postage stamp cutouts, each centered on a single bright star.", + name="brightStarStamps2", + storageClass="Stamps", + dimensions=("visit", "detector"), + ) + + +class BrightStarCutoutConfig( + PipelineTaskConfig, + pipelineConnections=BrightStarCutoutConnections, +): + """Configuration parameters for BrightStarCutoutTask.""" + + # Star selection + magLimit = Field[float]( + doc="Magnitude limit, in Gaia G. Cutouts will be made for all stars brighter than this magnitude.", + default=18, + ) + excludeArcsecRadius = Field[float]( + doc="Stars with a star brighter than ``excludeMagLimit`` in ``excludeArcsecRadius`` are not be used.", + default=5, + ) + excludeMagLimit = Field[float]( + doc="Stars with a star brighter than ``excludeMagLimit`` in ``excludeArcsecRadius`` are not be used.", + default=20, + ) + minAreaFraction = Field[float]( + doc="Minimum fraction of the stamp area, post-masking, that must remain for a cutout to be retained.", + default=0.1, + ) + badMaskPlanes = ListField[str]( + doc="Mask planes that identify excluded pixels for the calculation of ``minAreaFraction``.", + default=["BAD", "CR", "CROSSTALK", "EDGE", "NO_DATA", "SAT", "SUSPECT", "UNMASKEDNAN"], + ) + + # Cutout geometry + stampSize = ListField[int]( + doc="Size of the stamps to be extracted, in pixels.", + default=(1001, 1001), + ) + stampSizePadding = Field[float]( + doc="Multiplicative factor applied to the cutout stamp size, to guard against post-warp flux loss.", + default=1.1, + ) + warpingKernelName = ChoiceField[str]( + doc="Warping kernel.", + default="lanczos5", + allowed={ + "bilinear": "bilinear interpolation", + "lanczos3": "Lanczos kernel of order 3", + "lanczos4": "Lanczos kernel of order 4", + "lanczos5": "Lanczos kernel of order 5", + }, + ) + + # Misc + neighborMaskPlane = Field[str]( + doc="Mask plane to identify pixels that are bright star neighbors.", + default="NEIGHBOR", + ) + loadReferenceObjectsConfig = ConfigField[LoadReferenceObjectsConfig]( + doc="Reference object loader for astrometric calibration.", + ) + + +class BrightStarCutoutTask(PipelineTask): + """Extract bright star cutouts; normalize and warp to the same pixel grid. + + This task is used to extract, process, and store small image cutouts + (or "postage stamps") around bright stars. This task essentially consists + of three principal steps. First, it identifies bright stars within an + exposure using a reference catalog and extracts a stamp around each. + Second, it shifts and warps each stamp to remove optical distortions and + sample all stars on the same pixel grid. Finally, it computes the flux of + an object in an annulus and normalizes it. This is required to normalize + each bright star stamp as their central pixels are likely saturated and/or + contain ghosts, and cannot be used. + """ + + ConfigClass = BrightStarCutoutConfig + _DefaultName = "brightStarCutout" + + def __init__(self, initInputs=None, *args, **kwargs): + super().__init__(*args, **kwargs) + stampSize = Extent2D(*self.config.stampSize.list()) + stampRadius = floor(stampSize / 2) + self.stampBBox = Box2I(corner=Point2I(0, 0), dimensions=Extent2I(1, 1)).dilatedBy(stampRadius) + paddedStampSize = stampSize * self.config.stampSizePadding + self.paddedStampRadius = floor(paddedStampSize / 2) + self.paddedStampBBox = Box2I(corner=Point2I(0, 0), dimensions=Extent2I(1, 1)).dilatedBy( + self.paddedStampRadius + ) + + def runQuantum(self, butlerQC, inputRefs, outputRefs): + inputs = butlerQC.get(inputRefs) + inputs["dataId"] = str(butlerQC.quantum.dataId) + refObjLoader = ReferenceObjectLoader( + dataIds=[ref.datasetRef.dataId for ref in inputRefs.refCat], + refCats=inputs.pop("refCat"), + name=self.config.connections.refCat, + config=self.config.loadReferenceObjectsConfig, + ) + output = self.run(**inputs, refObjLoader=refObjLoader) + # Only ingest Stamp if it exists; prevent ingesting an empty FITS file + if output: + butlerQC.put(output, outputRefs) + + @timeMethod + def run(self, inputExposure, inputBackground, refObjLoader=None, dataId=None, skyCorr=None): + """Identify bright stars within an exposure using a reference catalog, + extract stamps around each, then preprocess them. + + Bright star preprocessing steps are: shifting, warping and potentially + rotating them to the same pixel grid; computing their annular flux, + and; normalizing them. + + Parameters + ---------- + inputExposure : `~lsst.afw.image.ExposureF` + The image from which bright star stamps should be extracted. + refObjLoader : `~lsst.meas.algorithms.ReferenceObjectLoader`, optional + Loader to find objects within a reference catalog. + dataId : `dict` or `~lsst.daf.butler.DataCoordinate` + The dataId of the exposure (including detector) that bright stars + should be extracted from. + skyCorr : `~lsst.afw.math.backgroundList.BackgroundList`, optional + Full focal plane sky correction obtained by `SkyCorrectionTask`. + + Returns + ------- + brightStarResults : `~lsst.pipe.base.Struct` + Results as a struct with attributes: + + ``brightStarStamps`` + (`~lsst.meas.algorithms.brightStarStamps.BrightStarStamps`) + """ + wcs = inputExposure.getWcs() + bbox = inputExposure.getBBox() + warpCont = WarpingControl(self.config.warpingKernelName) + neighborMP = self.config.neighborMaskPlane + + refCatBright = self._getRefCatBright(refObjLoader, wcs, bbox) + zipRaDec = zip(refCatBright["coord_ra"] * radians, refCatBright["coord_dec"] * radians) + spherePoints = [SpherePoint(ra, dec) for ra, dec in zipRaDec] + pixCoords = wcs.skyToPixel(spherePoints) + + # Restore original subtracted background + inputMI = inputExposure.getMaskedImage() + inputMI += inputBackground.getImage() + + # Set up NEIGHBOR mask plane; associate footprints with stars + inputExposure.mask.addMaskPlane(neighborMP) + allFootprints, associations = self._associateFootprints(inputExposure, pixCoords, plane="DETECTED") + + # TODO: If we eventually have better PhotoCalibs (eg FGCM), apply here + inputMI = inputExposure.getPhotoCalib().calibrateImage(inputMI, False) + + # Set up transform + detector = inputExposure.detector + pixelScale = wcs.getPixelScale().asArcseconds() * arcseconds + pixToFocalPlaneTan = detector.getTransform(PIXELS, FIELD_ANGLE).then( + makeTransform(AffineTransform.makeScaling(1 / pixelScale.asRadians())) + ) + + # Loop over each bright star + stamps = [] + for starIndex, (obj, sp, pc) in enumerate(zip(refCatBright, spherePoints, pixCoords)): # type: ignore + footprintIndex = associations.get(starIndex, None) + stamp_im = ExposureF(self.paddedStampBBox) + + # Set NEIGHBOR footprints in the mask plane + if footprintIndex: + neighborFootprints = [fp for i, fp in enumerate(allFootprints) if i != footprintIndex] + self._setFootprints(inputExposure, neighborFootprints, neighborMP) + else: + self._setFootprints(inputExposure, allFootprints, neighborMP) + + # Define linear shifting to recenter stamps + coordFocalPlaneTan = pixToFocalPlaneTan.applyForward(pc) # center of warped star + shift = makeTransform(AffineTransform(Point2D(0, 0) - coordFocalPlaneTan)) + angle = np.arctan2(coordFocalPlaneTan.getY(), coordFocalPlaneTan.getX()) * radians + rotation = makeTransform(AffineTransform.makeRotation(-angle)) + pixToPolar = pixToFocalPlaneTan.then(shift).then(rotation) + + # Apply the warp to the star stamp (in-place) + warpImage(stamp_im.maskedImage, inputExposure.maskedImage, pixToPolar, warpCont) + stamp_im.setWcs(makeModifiedWcs(pixToPolar, wcs, False)) + stamp_im.setPhotoCalib(PhotoCalib(1.0)) + stamp_im.setPsf(WarpedPsf(inputExposure.getPsf(), pixToPolar, warpCont)) + + # Trim to the base stamp size, check mask coverage, update metadata + stamp_im = stamp_im[self.stampBBox] + badMaskBitMask = stamp_im.mask.getPlaneBitMask(self.config.badMaskPlanes) + goodFrac = np.sum(stamp_im.mask.array & badMaskBitMask == 0) / stamp_im.mask.array.size + if goodFrac < self.config.minAreaFraction: + continue + md = stamp_im.getMetadata() + md.update(dict(obj)) + + stamps.append(Stamp(stamp_im, archive_element=pixToPolar, position=sp)) + + grammar = "stamp" if len(stamps) == 1 else "stamps" + self.log.info( + "Extracted %i bright star %s; %i excluded due to insufficient usable area (less than %s%%).", + len(stamps), + grammar, + len(pixCoords) - len(stamps), + self.config.minAreaFraction * 100, + ) + brightStarStamps = Stamps(stamps) + return Struct(brightStarStamps=brightStarStamps) + + def _getRefCatBright(self, refObjLoader, wcs, bbox): + """Get a bright star subset of the reference catalog. + + Trim the reference catalog to only those objects within the exposure + bounding box dilated by half the bright star stamp size. + This ensures all stars that overlap the exposure are included. + + Parameters + ---------- + refObjLoader : `~lsst.meas.algorithms.ReferenceObjectLoader` + Loader to find objects within a reference catalog. + wcs : `~lsst.afw.geom.SkyWcs` + World coordinate system. + bbox : `~lsst.geom.Box2I` + Bounding box of the exposure. + + Returns + ------- + refCatBright : `~astropy.table.Table` + Bright star subset of the reference catalog. + """ + dilatedBBox = bbox.dilatedBy(self.paddedStampRadius) + withinExposure = refObjLoader.loadPixelBox(dilatedBBox, wcs, filterName="phot_g_mean") + refCatFull = withinExposure.refCat + fluxField: str = withinExposure.fluxField + + proxFluxLimit = ((self.config.excludeMagLimit * u.ABmag).to(u.nJy)).to_value() + brightFluxLimit = ((self.config.magLimit * u.ABmag).to(u.nJy)).to_value() + + subsetStars = refCatFull[fluxField] > np.min((proxFluxLimit, brightFluxLimit)) + refCatSubset = Table(refCatFull.extract("id", "coord_ra", "coord_dec", fluxField, where=subsetStars)) + proxStars = refCatSubset[fluxField] >= proxFluxLimit + brightStars = refCatSubset[fluxField] >= brightFluxLimit + + coords = SkyCoord(refCatSubset["coord_ra"], refCatSubset["coord_dec"], unit="rad") + refCatBrightIsolated = [] + for coord in coords[brightStars]: + neighbors = coords[proxStars] + seps = coord.separation(neighbors).to(u.arcsec) + tooClose = (seps > 0) & (seps <= self.config.excludeArcsecRadius * u.arcsec) # not self matched + refCatBrightIsolated.append(not tooClose.any()) + + refCatBright = refCatSubset[brightStars][refCatBrightIsolated] + + # refCatBright["mag"] = (refCatBright[fluxField][:] * u.nJy).to(u.ABmag).to_value() # AB magnitudes + + grammar = "star" if len(refCatFull) == 1 else "stars" + self.log.info( + "Identified %i of %i %s overlapping the frame brighter than %s mag and with no nearby neighbors.", + len(refCatBright), + len(refCatFull), + grammar, + self.config.magLimit, + ) + + return refCatBright + + def _setFootprints(self, inputExposure, footprints, maskPlane): + """Set footprints in a given mask plane. + + Parameters + ---------- + inputExposure : `~lsst.afw.image.ExposureF` + The input exposure to modify. + footprints : `list` [`~lsst.afw.detection.Footprint`] + The footprints to set in the mask plane. + maskPlane : `str` + The mask plane to set the footprints in. + + Notes + ----- + This method modifies the ``inputExposure`` object in-place. + """ + detThreshold = Threshold(inputExposure.mask.getPlaneBitMask(maskPlane), Threshold.BITMASK) + detThresholdValue = int(detThreshold.getValue()) + footprintSet = FootprintSet(inputExposure.mask, detThreshold) + + # Wipe any existing footprints in the mask plane + inputExposure.mask.clearMaskPlane(int(np.log2(detThresholdValue))) + + # Set the footprints in the mask plane + footprintSet.setFootprints(footprints) + footprintSet.setMask(inputExposure.mask, maskPlane) + + def _associateFootprints(self, inputExposure, pixCoords, plane): + """Associate footprints from a given mask plane with specific objects. + + Footprints from the given mask plane are associated with objects at the + coordinates provided, where possible. + + Parameters + ---------- + inputExposure : `~lsst.afw.image.ExposureF` + The input exposure with a mask plane. + pixCoords : `list` [`~lsst.geom.Point2D`] + The pixel coordinates of the objects. + plane : `str` + The mask plane used to identify masked pixels. + + Returns + ------- + footprints : `list` [`~lsst.afw.detection.Footprint`] + The footprints from the input exposure. + associations : `dict` + Association indices between objects (key) and footprints (value). + """ + detThreshold = Threshold(inputExposure.mask.getPlaneBitMask(plane), Threshold.BITMASK) + footprintSet = FootprintSet(inputExposure.mask, detThreshold) + footprints = footprintSet.getFootprints() + associations = {} + for starIndex, pixCoord in enumerate(pixCoords): + for footprintIndex, footprint in enumerate(footprints): + if footprint.contains(Point2I(pixCoord)): + associations[starIndex] = footprintIndex + break + grammar = "footprint" if len(footprints) == 1 else "footprints" + self.log.info( + "Associated %i of %i %s %s with stars in the reference catalog.", + len(associations), + len(footprints), + plane, + grammar, + ) + return footprints, associations diff --git a/python/lsst/pipe/tasks/brightStarSubtraction/brightStarModel.py b/python/lsst/pipe/tasks/brightStarSubtraction/brightStarModel.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/python/lsst/pipe/tasks/brightStarSubtraction/brightStarSubtract.py b/python/lsst/pipe/tasks/brightStarSubtraction/brightStarSubtract.py new file mode 100644 index 0000000000..e69de29bb2