-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIntegration_2_6.py
301 lines (272 loc) · 11.7 KB
/
Integration_2_6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
import cv2
from darkflow.net.build import TFNet
from finding_lane_1 import detect_lanes_img
import numpy as np
import serial
import time
import json
import pika
import threading
from threading import Timer,Thread,Event
#inisiasi global variable
json_rmq = {}
class perpetualTimer(): #Fungsi untuk melakukan threading publishin data json deteksi YOLO
def __init__(self,t,hFunction):
self.t=t
self.hFunction = hFunction
self.thread = Timer(self.t,self.handle_function)
def handle_function(self):
self.hFunction()
self.thread = Timer(self.t,self.handle_function)
self.thread.start()
def start(self):
self.thread.start()
def cancel(self):
self.thread.cancel()
def publish_json(): #Prosedur untuk melakukan publishing
global json_rmq
global channel
''' global arduino '''
if(bool(json_rmq)):
channel.basic_publish(exchange='amq.topic',routing_key='data.json',body=json.dumps(json_rmq))
''' words = json.dumps(json_rmq)
bword = bytes(words,'utf-8')
arduino.write(bword) '''
json_rmq = {}
def draw_boxes_image(colors,results,frame,channel):
#arduino = serial.Serial('COM3',9600)
json_file = []
#properties = pika.BasicProperties(content_type = "application/json",delivery_mode = 1)
for (color, result) in zip (colors, results):
#Convert confidence level to int from float
json_temp = dict(result)
json_conf = json_temp['confidence']
json_conf = int(round(json_conf*100))
json_temp['confidence'] = json_conf
#till here
json_file.append(json_temp)
tl = (result['topleft']['x'], result['topleft']['y'])
br = (result['bottomright']['x'], result['bottomright']['y'])
confidence = result['confidence']
label = result['label']
text = '{}: {:.1f}%'.format(label,confidence*100 )
frame = cv2.rectangle(frame, tl, br, color, 5)
frame = cv2.putText(frame, text, tl, cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 0), 2)
'''
if (arduino.isOpen()):
word = label + '\n'
bword = bytes(word,'utf-8')
arduino.write(bword)
'''
cv2.imshow ("predicted",frame)
with open('data.json','w') as outfile:
json.dump(json_file,outfile)
channel.basic_publish(exchange='amq.topic',routing_key='data.json',body=json.dumps(json_file))
#arduino.close()
'''
def send_to_arduino(word):
arduino = serial.Serial('COM3',9600)
if (arduino.isOpen()):
word = word +'\n'
bword = bytes(word,'utf-8')
arduino.write(bword)
def result_to_word(result):
word = '{}'.format(result['label'])
return word
'''
# M A I N P R O G R A M
options = {
'model': 'cfg/yolo-voc.cfg',
'load': 'bin/yolo-voc.weights',
'threshold': 0.3,
'gpu': 0.5
}
tfnet = TFNet(options) #inisiasi darkflow
fileRead = input('Enter Image/Video/Webcam : ') #membaca nama file dari pengguna
filename , fileExtension = os.path.splitext(fileRead) #memisahkan nama file dan extension
px_cm_car = 15118 #cm per pixel for car
colors = [tuple(255 * np.random.rand(3)) for _ in range(10)]
#Inisiasi rabbitmq dan arduino
credentials = pika.PlainCredentials('autodrive', 'autodrive2218!')
parameters = pika.ConnectionParameters('167.205.7.226',5672,'/autodrive',credentials)
connection = pika.BlockingConnection(parameters)
channel = connection.channel()
channel.queue_declare(queue='data.YOLO', durable=True)
channel.exchange_declare(exchange='amq.topic', exchange_type='topic', durable=True)
arduino = serial.Serial('COM15',9600)
time.sleep(1)
if (fileExtension == '.jpg') :
frame = cv2.imread (fileRead)
results = tfnet.return_predict(frame)
draw_boxes_image(colors,results,frame,channel)
cv2.waitKey(0)
cv2.destroyAllWindows()
elif (fileExtension == '.mp4') :
capture = cv2.VideoCapture(fileRead)
capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
frame_number = 1
json_file = {}
px_cm_person = 7500
ztime = time.time()
pub_json = perpetualTimer(1,publish_json)
pub_json.start()
while True:
stime = time.time()
ret, frame = capture.read()
if ret:
cols = frame.shape[1]
cols_decision1 = cols/2 + 20
cols_decision2 = cols/2 - 20
results = tfnet.return_predict(frame)
frame = detect_lanes_img(frame)
json_frame = []
frame_str = 'frame {}'.format(frame_number)
word_frame = ''
for (color, result) in zip (colors, results):
#Convert confidence level to int from float
json_temp = dict(result)
json_conf = json_temp['confidence']
json_conf = int(round(json_conf*100))
json_temp['confidence'] = json_conf
json_frame.append(json_temp)
tl = (result['topleft']['x'], result['topleft']['y'])
br = (result['bottomright']['x'], result['bottomright']['y'])
cols_center = (tl[0] + br[0])/2
if (cols_center > cols_decision2 and cols_center < cols_decision1):
obj_position = 0
elif (cols_center >= cols_decision1):
obj_position = 1
elif (cols_center <= cols_decision2):
obj_position = -1
confidence = result['confidence']
label = result['label']
if (label == 'person'):
width_person = result['bottomright']['y'] - result['topleft']['y']
dist_person = px_cm_person/width_person
dist_person = format(dist_person, '.2f')
text = '{}: {}cm'.format(label,dist_person )
word = label + ',' + '{}'.format(confidence) +','+ dist_person + ',' +'{}'.format(obj_position)
elif (label == 'car'):
width_car = result['bottomright']['y'] - result['topleft']['y']
dist_car = format(px_cm_car/width_car, '.2f')
text = '{}: {}cm'.format(label,dist_car)
word = label + ',' + '{}'.format(confidence) +','+ dist_car + ',' + '{}'.format(obj_position)
else :
text = '{}: {:.1f}%'.format(label,confidence*100 )
word = label + ',' + '{}'.format(confidence) + ','+ 'not a car or person' + ',' + '{}'.format(obj_position)
frame = cv2.rectangle(frame, tl, br, color, 5)
frame = cv2.putText(frame, text, tl, cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 0), 2)
word_frame = word_frame + word + ';'
'''
if (arduino.isOpen()):
word = label + '\n'
bword = bytes(word,'utf-8')
arduino.write(bword)
'''
json_file[frame_str] = list(json_frame)
json_rmq[frame_str] = list(json_frame)
word_frame = word_frame + '\n'
if (arduino.isOpen()):
bword = bytes(word_frame,'utf-8')
arduino.write(bword)
frame_number = frame_number + 1
cv2.imshow ("predicted",frame)
print('FPS {:.1f}'.format(1 / (time.time() - stime)))
if cv2.waitKey(1) & 0xFF == ord('q'):
break
capture.release()
cv2.destroyAllWindows()
with open('data.json','w') as outfile:
json.dump(json_file,outfile)
print('Jumlah Frame :{}'.format(frame_number))
avg_frame = format( frame_number/(time.time()-ztime) ,'.2f')
print('Average FPS: {}'.format(avg_frame))
pub_json.cancel()
arduino.close()
elif (fileExtension == '.0' or fileExtension == '.1' ) :
fileExtension = fileExtension[-1]
cam = int (fileExtension)
capture = cv2.VideoCapture(cam)
frame_number = 1
json_file = {}
#json_rmq = {}
px_cm_person = 20000
ztime = time.time()
pub_json = perpetualTimer(1,publish_json)
pub_json.start()
while True:
stime = time.time()
ret, frame = capture.read()
results = tfnet.return_predict(frame)
if ret:
cols = frame.shape[1]
cols_decision1 = cols/2 + 20
cols_decision2 = cols/2 - 20
#frame = detect_lanes_img(frame)
json_frame = []
frame_str = 'frame {}'.format(frame_number)
word_frame = ''
for (color, result) in zip (colors, results):
#Convert confidence level to int from float
json_temp = dict(result)
json_conf = json_temp['confidence']
json_conf = int(round(json_conf*100))
json_temp['confidence'] = json_conf
json_frame.append(json_temp)
tl = (result['topleft']['x'], result['topleft']['y'])
br = (result['bottomright']['x'], result['bottomright']['y'])
cols_center = (tl[0] + br[0])/2
if (cols_center > cols_decision2 and cols_center < cols_decision1):
obj_position = 0
elif (cols_center >= cols_decision1):
obj_position = 1
elif (cols_center <= cols_decision2):
obj_position = -1
confidence = result['confidence']
label = result['label']
if (label == 'person'):
width_person = result['bottomright']['y'] - result['topleft']['y']
dist_person = px_cm_person/width_person
dist_person = format(dist_person, '.2f')
text = '{}: {}cm'.format(label,dist_person )
word = label + ',' + '{}'.format(confidence) +','+ dist_person + ',' +'{}'.format(obj_position)
elif (label == 'car'):
width_car = result['bottomright']['y'] - result['topleft']['y']
dist_car = format(px_cm_car/width_car, '.2f')
text = '{}: {}cm'.format(label,dist_car)
word = label + ',' + '{}'.format(confidence) +','+ dist_car + ',' + '{}'.format(obj_position)
else :
text = '{}: {:.1f}%'.format(label,confidence*100 )
word = label + ',' + '{}'.format(confidence) + ','+ 'not a car or person' + ',' + '{}'.format(obj_position)
frame = cv2.rectangle(frame, tl, br, color, 5)
frame = cv2.putText(frame, text, tl, cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 0), 2)
word_frame = word_frame + word + ';'
json_file[frame_str] = list(json_frame)
json_rmq[frame_str] = list(json_frame)
word_frame = word_frame + '\n'
if (arduino.isOpen()):
bword = bytes(word_frame,'utf-8')
arduino.write(bword)
# if ((frame_number % 5) == 0):
# channel.basic_publish(exchange='amq.topic',routing_key='data.json',body=json.dumps(json_rmq))
# json_rmq = {}
frame_number = frame_number + 1
cv2.imshow ("predicted",frame)
print('FPS {:.1f}\n'.format(1 / (time.time() - stime)))
if cv2.waitKey(1) & 0xFF == ord('q'):
break
capture.release()
cv2.destroyAllWindows()
with open('data.json','w') as outfile:
json.dump(json_file,outfile)
print('Jumlah Frame :{}'.format(frame_number))
avg_frame = format( frame_number/(time.time()-ztime) ,'.2f')
print('Average FPS: {}'.format(avg_frame))
pub_json.cancel()
arduino.close()
elif (fileRead == 'exit'):
pass
else:
print('Input Invalid')