-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
130 lines (104 loc) · 3.67 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%",
dpi = 300,
fig.width = 8
)
```
# binpackr
<!-- badges: start -->
[![R-CMD-check](https://github.com/lschneiderbauer/binpackr/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/lschneiderbauer/binpackr/actions/workflows/R-CMD-check.yaml) [![Codecov test coverage](https://codecov.io/gh/lschneiderbauer/binpackr/branch/master/graph/badge.svg)](https://app.codecov.io/gh/lschneiderbauer/binpackr?branch=master) [![Lifecycle: experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://lifecycle.r-lib.org/articles/stages.html#experimental) [![CRAN status](https://www.r-pkg.org/badges/version/binpackr)](https://CRAN.R-project.org/package=binpackr)
<!-- badges: end -->
This package implements the First Fit Decreasing algorithm to achieve one dimensional heuristic bin packing. Its run time is of order $\mathcal{O}(n\,log(n))$ where $n$ is the number of items to pack.
## Installation
You can install the latest CRAN release of binpackr with:
``` r
install.packages("binpackr")
```
Alternatively, you can install the development version of binpackr from [GitHub](https://github.com/) with:
``` r
# install.packages("devtools")
devtools::install_github("lschneiderbauer/binpackr")
```
## Example
This is a basic example which shows to retrieve the solution for the bin packing problem.
```{r example}
library(binpackr)
# Generate a vector of item sizes
set.seed(42)
x <- sample(100, 1000, replace = TRUE)
# Pack those items into bins of capacity 130
bins <- bin_pack_ffd(x, cap = 130)
# Number of bins needed to pack the items
print(length(unique(bins)))
```
## Benchmarks
The implementation in this package is compared to an implementation of the same algorithm in the [BBmisc](https://github.com/berndbischl/BBmisc) package. The authors made it clear that speed was none of their concern. BBmisc's implementation is written in R while this package uses a C++ implementation.
```{r benchmark_calc, echo=FALSE, message=FALSE, warning=FALSE}
result <- readRDS("./benchmark/results.rds")
library(ggplot2)
library(dplyr)
```
### Run time
```{r benchmark_runtime, echo = FALSE}
result |>
mutate(
ymin = as.numeric(mean - std),
ymax = as.numeric(mean + std),
median = as.numeric(median)
) |>
ggplot(aes(
x = n, y = median, color = name, fill = name,
ymin = ymin, ymax = ymax
)) +
scale_x_continuous(
name = "Number of items",
labels = scales::label_number(
scale_cut = scales::cut_long_scale()
)
) +
scale_y_continuous(
name = "Runtime (in seconds)",
labels = scales::label_number(
suffix = "s",
scale_cut = scales::cut_long_scale()
)
) +
geom_ribbon(alpha = 0.3, linewidth = 0) +
geom_point() +
geom_line() +
theme_minimal() +
theme(legend.position = "bottom") +
labs(fill = "Implementation", color = "Implementation")
```
### Memory allocation
```{r benchmark_memory, echo = FALSE}
result |>
ggplot(aes(x = n, y = mem_alloc, color = name)) +
scale_x_continuous(
name = "Number of items",
labels = scales::label_number(
scale_cut = scales::cut_long_scale()
)
) +
scale_y_continuous(
name = "Memory allocation",
labels = scales::label_number(
suffix = "B",
scale_cut = scales::cut_long_scale()
)
) +
geom_point() +
geom_line() +
facet_wrap(vars(name), scales = "free_y", ncol = 1) +
theme_minimal() +
theme(legend.position = "bottom") +
labs(fill = "Implementation", color = "Implementation")
```