-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpaper.bib
171 lines (164 loc) · 5.33 KB
/
paper.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
@article{durante2015convergence,
title={Convergence results for patchwork copulas},
author={Durante, Fabrizio and Fern{\'a}ndez-S{\'a}nchez, Juan and Quesada-Molina, Jos{\'e} Juan and Ubeda-Flores, Manuel},
journal={European Journal of Operational Research},
volume={247},
number={2},
pages={525--531},
year={2015},
publisher={Elsevier},
doi={10.1016/j.ejor.2015.06.028}
}
@inproceedings{ram2011density,
title={Density estimation trees},
author={Ram, Parikshit and Gray, Alexander G},
booktitle={Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining},
pages={627--635},
year={2011},
doi={10.1145/2020408.2020507},
}
@article{wu2018density,
title={Density estimation via the random forest method},
author={Wu, Kaiyuan and Hou, Wei and Yang, Hongbo},
journal={Communications in Statistics-Theory and Methods},
volume={47},
number={4},
pages={877--889},
year={2018},
publisher={Taylor \& Francis},
doi={10.1080/03610926.2017.1285929}
}
@article{sklar1959fonctions,
title={Fonction de r{\'e}partition dont les marges sont donn{\'e}es},
author={Sklar, Abe},
journal={Inst. Stat. Univ. Paris},
volume={8},
pages={229--231},
year={1959}
}
@article{nagler2016evading,
title={Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas},
author={Nagler, Thomas and Czado, Claudia},
journal={Journal of Multivariate Analysis},
volume={151},
pages={69--89},
year={2016},
publisher={Elsevier},
doi={10.1016/j.jmva.2016.07.003}
}
@misc{li2018panda,
title={PANDA: AdaPtive Noisy Data Augmentation for Regularization of Undirected Graphical Models},
author={Yinan Li and Xiao Liu and Fang Liu},
year={2019},
eprint={1810.04851},
archivePrefix={arXiv},
primaryClass={stat.ML},
url={https://arxiv.org/abs/1810.04851}
}
@misc{laverny2020dependence,
title={Dependence structure estimation using Copula Recursive Trees},
author={Oskar Laverny and Véronique Maume-Deschamps and Esterina Masiello and Didier Rullière},
year={2020},
eprint={2005.02912},
archivePrefix={arXiv},
primaryClass={math.ST},
url={https://arxiv.org/abs/2005.02912}
}
@Manual{cop1,
title = {copula: Multivariate Dependence with Copulas},
author = {Marius Hofert and Ivan Kojadinovic and Martin Maechler
and Jun Yan},
year = {2020},
note = {R package version 1.0-0},
url = {https://CRAN.R-project.org/package=copula},
}
@Article{cop2,
title = {Enjoy the Joy of Copulas: With a Package {copula}},
author = {{Jun Yan}},
journal = {Journal of Statistical Software},
year = {2007},
volume = {21},
number = {4},
pages = {1--21},
url = {http://www.jstatsoft.org/v21/i04/},
doi = {10.18637/jss.v021.i04},
}
@Article{cop3,
title = {Modeling Multivariate Distributions with Continuous
Margins Using the {copula} {R} Package},
author = {{Ivan Kojadinovic} and {Jun Yan}},
journal = {Journal of Statistical Software},
year = {2010},
volume = {34},
number = {9},
pages = {1--20},
url = {http://www.jstatsoft.org/v34/i09/},
doi = {10.18637/jss.v034.i09},
}
@Article{cop4,
title = {Nested Archimedean Copulas Meet {R}: The {nacopula}
Package},
author = {{Marius Hofert} and {Martin M\"achler}},
journal = {Journal of Statistical Software},
year = {2011},
volume = {39},
number = {9},
pages = {1--20},
url = {http://www.jstatsoft.org/v39/i09/},
doi = {10.18637/jss.v039.i09},
}
@Misc{future,
author = {Henrik Bengtsson},
title = {A Unifying Framework for Parallel and Distributed
Processing in R using Futures},
year = {2020},
month = {aug},
eprint = {2008.00553},
archiveprefix = {arXiv},
primaryclass = {cs.DC},
url = {https://arxiv.org/abs/2008.00553},
}
@Article{rcpp1,
title = {{Rcpp}: Seamless {R} and {C++} Integration},
author = {Dirk Eddelbuettel and Romain Fran\c{c}ois},
journal = {Journal of Statistical Software},
year = {2011},
volume = {40},
number = {8},
pages = {1--18},
url = {http://www.jstatsoft.org/v40/i08/},
doi = {10.18637/jss.v040.i08},
}
@Book{rcpp2,
title = {Seamless R and C++ Integration with {Rcpp}},
author = {Dirk Eddelbuettel},
publisher = {Springer},
address = {New York},
year = {2013},
note = {ISBN 978-1-4614-6867-7},
doi = {10.1007/978-1-4614-6868-4},
}
@Article{rcpp3,
title = {{Extending R with C++: A Brief Introduction
to extit{Rcpp}}},
author = {Dirk Eddelbuettel and James Joseph Balamuta},
journal = {PeerJ Preprints},
year = {2017},
month = {aug},
volume = {5},
pages = {e3188v1},
issn = {2167-9843},
url = {https://doi.org/10.7287/peerj.preprints.3188v1},
doi = {10.7287/peerj.preprints.3188v1},
}
@Article{rcpp4,
title = {RcppArmadillo: Accelerating R with high-performance C++ linear algebra},
author = {Dirk Eddelbuettel and Conrad Sanderson},
journal = {Computational Statistics and Data Analysis},
year = {2014},
volume = {71},
month = {March},
pages = {1054--1063},
url = {http://dx.doi.org/10.1016/j.csda.2013.02.005},
doi = {10.1016/j.csda.2013.02.005}
}