forked from cmuparlay/parlaylib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoct_tree.h
157 lines (132 loc) · 5.11 KB
/
oct_tree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <array>
#include <limits>
#include <utility>
#include "parlay/alloc.h"
#include "parlay/primitives.h"
#include "parlay/delayed.h"
#include "parlay/sequence.h"
#include "parlay/utilities.h"
// **************************************************************
// Builds the z-tree variant of oct-trees.
// Magdalen Dobson and Guy E. Blelloch.
// Parallel Nearest Neighbors in Low Dimensions with Batch Updates.
// ALENEX 2022
// Sorts based on Morton ordering and then builds compressed oct tree
// on top of it (i.e. no nodes with a single child).
// **************************************************************
// type definitions
constexpr int dims = 3; // works for any constant dimension
using idx = int; // index of point (int can handle up to 2^31 points)
using coord = int; // type of each coordinate
using coords = std::array<coord,dims>;
struct point {idx id; coords pnt;};
using points = parlay::sequence<point>;
// max leaf size of tree
constexpr int node_size_cutoff = 20;
// **************************************************************
// bounding box (min value on each dimension, and max on each)
// **************************************************************
using box = std::pair<coords,coords>;
auto minv = [] (coords a, coords b) {
coords r;
for (int i=0; i < dims; i++) r[i] = std::min(a[i], b[i]);
return r;};
auto maxv = [] (coords a, coords b) {
coords r;
for (int i=0; i < dims; i++) r[i] = std::max(a[i], b[i]);
return r;};
coords center(box b) {
coords r;
for (int i=0; i < dims; i++) r[i] = (b.first[i] + b.second[i])/2;
return r;}
box bound_box(const parlay::sequence<point>& P) {
auto pts = parlay::map(P, [] (point p) {return p.pnt;});
auto x = box{parlay::reduce(pts, parlay::binary_op(minv, coords())),
parlay::reduce(pts, parlay::binary_op(maxv, coords()))};
return x;
}
box bound_box(const box& b1, const box& b2) {
return box{minv(b1.first, b2.first),
maxv(b1.second, b2.second)};
}
// **************************************************************
// Tree structure, leafs and interior extend the base node class
// **************************************************************
struct node { bool is_leaf; idx size; box bounds; node* parent; };
struct leaf : node {
points pts;
leaf(points pts)
: node{true, static_cast<idx>(pts.size()), bound_box(pts), nullptr},
pts(pts) {}
};
struct interior : node {
node* left;
node* right;
interior(node* left, node* right)
: node{false, left->size+right->size,
bound_box(left->bounds,right->bounds),nullptr},
left(left), right(right) {
left->parent = this; right->parent = this; }
};
parlay::type_allocator<leaf> leaf_allocator;
parlay::type_allocator<interior> interior_allocator;
// **************************************************************
// Build the tree
// **************************************************************
template <typename slice>
node* build_recursive(slice P, int bit, long base_size) {
long n = P.size();
if (n == 0) abort();
// if ran out of bits, or small then generate a leaf
if (bit == 0 || n < base_size) {
return leaf_allocator.allocate(parlay::to_sequence(P));
} else {
// binary search for the cut point on the given bit
auto bits = parlay::delayed::map(P, [&] (const point& p) {
return 1 == ((p.pnt[dims-bit%dims-1] >> bit/dims) & 1);});
long pos = std::lower_bound(bits.begin(), bits.end(), 1)-bits.begin();
// if all points are on one side, then move onto the next bit
if (pos == 0 || pos == n) return build_recursive(P, bit - 1, base_size);
// otherwise recurse on the two parts, also moving to next bit
else {
node *L, *R;
parlay::par_do([&] () {L = build_recursive(P.cut(0, pos), bit - 1, base_size);},
[&] () {R = build_recursive(P.cut(pos, n), bit - 1, base_size);});
return interior_allocator.allocate(L,R);
}
}
}
auto z_tree(const parlay::sequence<coords>& P, long base_size = node_size_cutoff) {
// compares the interleaved bits of points p and q without explicitly
// interleaving them. From Timothy Chan.
auto less = [] (const point& p, const point& q) {
int j, k;
coord y, x = 0;
auto less_msb = [] (coord x, coord y) { return x < y && x < (x^y);};
for (j = k = 0; k < dims; k++ )
if (less_msb(x, y = p.pnt[k] ^ q.pnt[k])) {
j = k; x = y;}
return p.pnt[j] < q.pnt[j];
};
// tag points with identifiers
points pts = parlay::tabulate(P.size(), [&] (idx i) {
return point{i, P[i]};});
// sort by morton ordering
pts = parlay::sort(pts, less);
int nbits = dims*sizeof(coord)*8;
// build tree on top of morton ordering
return build_recursive(pts.cut(0, P.size()), nbits-1, base_size);
}
void delete_tree(node* T) { // delete tree in parallel
if (T->is_leaf) leaf_allocator.retire(static_cast<leaf*>(T));
else {
interior* TI = static_cast<interior*>(T);
parlay::par_do_if(T->size > 1000,
[&] {delete_tree(TI->left);},
[&] {delete_tree(TI->right);});
interior_allocator.retire(TI);
}
}