-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlevelprops.pro
183 lines (160 loc) · 6.18 KB
/
levelprops.pro
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
pro levelprops, p, extrapolate = extrapolate, deltav = deltav, $
psize = psize, xfac = xfac, hd = hd, dist = dist, $
forcelin = forcelin, clip = clip
; Pointer variable in, add information. Calculate the properties of
; the emission as a function of level. Return RMAT, VMAT, LMAT
if n_elements(extrapolate) eq 0 then noextrap = 1b else noextrap = 0b
if n_elements(psize) eq 0 then psize = 1
if n_elements(deltav) eq 0 then deltav = 1
if n_elements(xfac) eq 0 then xfac = 1
if n_elements(hd) gt 0 and n_elements(dist) eq 1 then begin
rdhd, hd, s = h
; DEG -> PC
psize = abs(h.cdelt[1])*!dtor*dist
; M/S -> KM/S
if n_elements(h.cdelt) eq 3 then $
deltav = abs(h.cdelt[2]/1e3) else $
deltav = 1.0
endif
; Dereference out of the heap.
leafnodes = (*p).order
levels = (*p).levels
decimkern = (*p).kernels
sz = (*p).sz
x = (*p).x
y = (*p).y
v = (*p).v
t = (*p).t
err = (*p).err
order = (*p).order
newmerger = (*p).newmerger
; Initialize the matrix of virial parameters: N_local_max by N_levels
rmat = fltarr(n_elements(leafnodes), n_elements(levels))+!values.f_nan
vmat = rmat
lmat = rmat
nmat = rmat
xmat = rmat
ymat = rmat
vvmat = rmat
rmat_err = rmat
vmat_err = vmat
lmat_err = lmat
majmat = rmat
minmat = rmat
pamat = rmat
for i = 0, n_elements(leafnodes)-1 do begin
; Pick a kernel.
kernel = decimkern[order[i]]
; Find its positions
x0 = kernel mod sz[1]
y0 = (kernel mod (sz[1]*sz[2]))/sz[1]
v0 = kernel/(sz[1]*sz[2])
; Find its location in the vector data
ind = (where(x eq x0 and y eq y0 and v eq v0))[0]
; Determine all new points that we have to calcuate properties at.
calc_levels = where(levels le t[ind] and $
rmat[i, *] ne rmat[i, *], calc_ct)
; If the matrix is all filled in for this cloud, then no worries!
if calc_ct eq 0 then continue
; Calculate properties
;; str = contour_prop(x, y, v, t, ind[0], $
;; levels = levels[calc_levels], $
;; noextrap = noextrap, $
;; all_neighbors = all_neighbors, /rotate, $
;; forcelin = forcelin, remove_min = clip, err = err)
str = contour_prop(float(x), float(y), float(v), float(t), ind[0], $
levels = levels[calc_levels], $
noextrap = 1, $
all_neighbors = all_neighbors, $
forcelin = forcelin, remove_min = clip, err = err)
strrot = contour_prop(float(x), float(y), float(v), float(t), ind[0], $
levels = levels[calc_levels], $
noextrap = 1, $
all_neighbors = all_neighbors, /rotate, $
forcelin = forcelin, remove_min = clip, err = err, $
pavec = pavec)
; Fill in the property matrices for this kernel.
rmat[i, calc_levels] = (1.91*sqrt(strrot.rmsx*strrot.rmsy))*psize
vmat[i, calc_levels] = sqrt((str.rmsv)^2)*deltav
lmat[i, calc_levels] = str.flux*psize^2*deltav
nmat[i, calc_levels] = str.number
xmat[i, calc_levels] = str.xcen
ymat[i, calc_levels] = str.ycen
vvmat[i, calc_levels] = str.vcen
lmat_err[i, calc_levels] = str.eflux*psize^2*deltav
rmat_err[i, calc_levels] = 1.91*psize/(2*sqrt(strrot.rmsx*strrot.rmsy))*$
sqrt(strrot.rmsy^2*strrot.ermsx^2+strrot.rmsx^2*strrot.ermsy^2)
vmat_err[i, calc_levels] = str.ermsv*deltav
pamat[i, calc_levels] = pavec+!pi/2*(strrot.rmsy gt strrot.rmsx)
minmat[i, calc_levels] = (strrot.rmsy < strrot.rmsx)
majmat[i,calc_levels] = (strrot.rmsx > strrot.rmsy)
if keyword_set(extrapolate) then begin
message,'Warning! Extrapolation currently disabled! You are not getting extrapolated properties!',/con
vmat[i, calc_levels] = sqrt((str.rmsv)^2)*deltav
endif
; Fill in any common values that we can determine based on our
; calculations
for j = i+1, n_elements(order)-1 do begin
repeat_ind = where(levels lt newmerger[i, j], ct)
if ct gt 0 then begin
lmat[j, repeat_ind] = lmat[i, repeat_ind]
rmat[j, repeat_ind] = rmat[i, repeat_ind]
vmat[j, repeat_ind] = vmat[i, repeat_ind]
nmat[j, repeat_ind] = nmat[i, repeat_ind]
xmat[j, repeat_ind] = xmat[i, repeat_ind]
ymat[j, repeat_ind] = ymat[i, repeat_ind]
vmat[j, repeat_ind] = vmat[i, repeat_ind]
lmat_err[j, repeat_ind] = lmat_err[i, repeat_ind]
rmat_err[j, repeat_ind] = rmat_err[i, repeat_ind]
vmat_err[j, repeat_ind] = vmat_err[i, repeat_ind]
minmat[j, repeat_ind] = minmat[i, repeat_ind]
majmat[j, repeat_ind] = majmat[i, repeat_ind]
pamat[j, repeat_ind] = pamat[i, repeat_ind]
endif
endfor
endfor
labelmat = fix(lmat)*0-1
clusters = (*p).clusters
sz = size(clusters)
height = (*p).height
for i = 0, n_elements(height)-1 do begin
roots = cluster_leaves(i, clusters)
ind = where(roots le (n_elements(leafnodes)-1), ct)
goodlvls = where(levels le height[i])
for j = 0, ct-1 do begin
null = where(roots[ind[j]] eq leafnodes)
labelmat[null[0], goodlvls] = $
labelmat[null[0], goodlvls] > i
endfor
endfor
ind=where(pamat gt !pi,ct)
if ct gt 0 then pamat[ind]=pamat[ind]-!pi
; Dump new data into the heap.
tn = tag_names(*p)
if total(tn eq 'LMAT') gt 0 then begin
(*p).lmat = lmat
(*p).rmat = rmat
(*p).vmat = vmat
(*p).nmat = nmat
(*p).xmat = xmat
(*p).ymat = ymat
(*p).vvmat = vvmat
(*p).labelmat = labelmat
(*p).hd = hd
(*p).lmat_err = lmat_err
(*p).rmat_err = rmat_err
(*p).vmat_err = vmat_err
(*p).majmat = majmat
(*p).minmat = minmat
(*p).pamat = pamat
endif else begin
(*p) = create_struct((*p), 'lmat', lmat, 'rmat', rmat, $
'vmat', vmat, 'nmat', nmat, 'xmat', xmat, $
'ymat', ymat, 'vvmat', vvmat, 'labelmat', labelmat, $
'hd', hd, 'lmat_err', lmat_err, $
'rmat_err', rmat_err, $
'vmat_err', vmat_err, 'majmat',majmat,$
'minmat',minmat, 'pamat',pamat)
endelse
return
end