-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathOAT.py
117 lines (101 loc) · 4.39 KB
/
OAT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# encoding: utf-8
from itertools import groupby
from collections import OrderedDict
import os
def dataSplit(data):
ds = []
mb = [sum([k for m, k in data['mk'] if m <= 10]), sum([k for m, k in data['mk'] if m > 10])]
for i in data['data']:
if mb[1] == 0:
ds.append([int(d) for d in i])
elif mb[0] == 0:
ds.append([int(i[n * 2:(n + 1) * 2]) for n in range(mb[1])])
else:
part_1 = [int(j) for j in i[:mb[0]]]
part_2 = [int(i[mb[0]:][n * 2:(n + 1) * 2]) for n in range(mb[1])]
ds.append(part_1 + part_2)
return ds
class OAT(object):
def __init__(self, OAFile=os.path.split(os.path.realpath(__file__))[0] + '/data/ts723_Designs.txt'):
"""
初始化解析构造正交表对象,数据来源:http://support.sas.com/techsup/technote/ts723_Designs.txt
"""
self.data = {}
# 解析正交表文件数据
with open(OAFile, ) as f:
# 定义临时变量
key = ''
value = []
pos = 0
for i in f:
i = i.strip()
if 'n=' in i:
if key and value:
self.data[key] = dict(pos=pos,
n=int(key.split('n=')[1].strip()),
mk=[[int(mk.split('^')[0]), int(mk.split('^')[1])] for mk in
key.split('n=')[0].strip().split(' ')],
data=value)
key = ' '.join([k for k in i.split(' ') if k])
value = []
pos += 1
elif i:
value.append(i)
self.data[key] = dict(pos=pos,
n=int(key.split('n=')[1].strip()),
mk=[[int(mk.split('^')[0]), int(mk.split('^')[1])] for mk in
key.split('n=')[0].strip().split(' ')],
data=value)
self.data = sorted(self.data.items(), key=lambda i: i[1]['pos'])
def get(self, mk):
"""
传入参数:mk列表,如[(2,3)],[(5,5),(2,1)]
1. 计算m,n,k
m=max(m1,m2,m3,…)
k=(k1+k2+k3+…)
n=k1*(m1-1)+k2*(m2-1)+…kx*x-1)+1
2. 查询正交表
这里简单处理,只返回满足>=m,n,k条件的n最小数据,未做复杂的数组包含校验
"""
mk = sorted(mk, key=lambda i: i[0])
m = max([i[0] for i in mk])
k = sum([i[1] for i in mk])
n = sum([i[1] * (i[0] - 1) for i in mk]) + 1
query_key = ' '.join(['^'.join([str(j) for j in i]) for i in mk])
for data in self.data:
# 先查询是否有完全匹配的正交表数据
if query_key in data[0]:
return dataSplit(data[1])
# 否则返回满足>=m,n,k条件的n最小数据
elif data[1]['n'] >= n and data[1]['mk'][0][0] >= m and data[1]['mk'][0][1] >= k:
return dataSplit(data[1])
# 无结果
return None
def genSets(self, params, mode=0, num=1):
"""
传入测试参数OrderedDict,调用正交表生成测试集
mode:用例裁剪模式,取值0,1
0 宽松模式,只裁剪重复测试集
1 严格模式,除裁剪重复测试集外,还裁剪含None测试集(num为允许None测试集最大数目)
"""
sets = []
# 根据因素水平数量进行排序
params = OrderedDict(sorted(params.items(), key=lambda x: len(x[1])))
mk = [(k, len(list(v))) for k, v in groupby(params.items(), key=lambda x: len(x[1]))]
data = self.get(mk)
for d in data:
# 根据正则表结果生成测试集
q = OrderedDict()
for index, (k, v) in zip(d, params.items()):
try:
q[k] = v[index]
except IndexError:
# 参数取值超出范围时,取None
q[k] = None
if q not in sets:
if mode == 0:
sets.append(q)
elif mode == 1 and (len(list(filter(lambda v: v is None, q.values())))) <= num:
# 测试集裁剪,去除重复及含None测试集
sets.append(q)
return sets