-
Notifications
You must be signed in to change notification settings - Fork 5
/
digit_sum.cpp
57 lines (49 loc) · 1.92 KB
/
digit_sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
//C++ program to compute sum of digits in numbers from 1 to n
#include<bits/stdc++.h>
using namespace std;
// Function to computer sum of digits in numbers from 1 to n
// Comments use example of 328 to explain the code
int sumOfDigitsFrom1ToN(int n)
{
// base case: if n<10 return sum of
// first n natural numbers
if (n<10)
return n*(n+1)/2;
// d = number of digits minus one in n. For 328, d is 2
int d = log10(n);
// computing sum of digits from 1 to 10^d-1,
// d=1 a[0]=0;
// d=2 a[1]=sum of digit from 1 to 9 = 45
// d=3 a[2]=sum of digit from 1 to 99 = a[1]*10 + 45*10^1 = 900
// d=4 a[3]=sum of digit from 1 to 999 = a[2]*10 + 45*10^2 = 13500
int *a = new int[d+1];
a[0] = 0, a[1] = 45;
for (int i=2; i<=d; i++)
a[i] = a[i-1]*10 + 45*ceil(pow(10,i-1));
// computing 10^d
int p = ceil(pow(10, d));
// Most significant digit (msd) of n,
// For 328, msd is 3 which can be obtained using 328/100
int msd = n/p;
// EXPLANATION FOR FIRST and SECOND TERMS IN BELOW LINE OF CODE
// First two terms compute sum of digits from 1 to 299
// (sum of digits in range 1-99 stored in a[d]) +
// (sum of digits in range 100-199, can be calculated as 1*100 + a[d]
// (sum of digits in range 200-299, can be calculated as 2*100 + a[d]
// The above sum can be written as 3*a[d] + (1+2)*100
// EXPLANATION FOR THIRD AND FOURTH TERMS IN BELOW LINE OF CODE
// The last two terms compute sum of digits in number from 300 to 328
// The third term adds 3*29 to sum as digit 3 occurs in all numbers
// from 300 to 328
// The fourth term recursively calls for 28
return msd*a[d] + (msd*(msd-1)/2)*p +
msd*(1+n%p) + sumOfDigitsFrom1ToN(n%p);
}
// Driver Program
int main()
{
int n = 328;
cout << "Sum of digits in numbers from 1 to " << n << " is "
<< sumOfDigitsFrom1ToN(n);
return 0;
}