-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmedianOf2SortedArrays.cpp
89 lines (74 loc) · 2.84 KB
/
medianOf2SortedArrays.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#include <iostream>
#include <vector>
#include <climits>
#include <algorithm>
using std::vector;
float medianOf2SortdArrays(vector<int>& array1, vector<int>& array2){
auto array1Size{array1.size()};
auto array2Size{array2.size()};
size_t totalLength {array1.size() + array2.size()};
size_t halfLength {totalLength / 2};
vector<int> biggerArray{array1};
vector<int> smallerArray{array2};
if (array1.size() < array2.size()){
biggerArray = array2;
smallerArray = array1;
}
//if(array1.empty() && array2.empty())
if(totalLength == 0)
return 0.0;
int leftIdx{0}, rightIdx{int(smallerArray.size()) -1};
while(true){
auto i{(leftIdx + rightIdx)/2}; // Smaller array midpoint index
auto j{ halfLength - i - 2}; // Larger array midpoint index. the -2 is because both arrays are indexed from zero, so we do -1 twice ie -1-1=-2
int smallerArrayLeftVal { (i>=0 ? smallerArray[i] : INT_MIN) };
int smallerArrayRightVal {( (i+1) < smallerArray.size() ? smallerArray[i+1] : INT_MAX )};
int biggerArrayLeftVal { (j>=0 ? biggerArray[j] : INT_MIN) };
int biggerArrayRightVal {( (j+1) < biggerArray.size() ? biggerArray[j+1] : INT_MAX )};
// When the left partition is just right
if (smallerArrayLeftVal <= biggerArrayRightVal && biggerArrayLeftVal <= smallerArrayRightVal){
// Odd : modulo produces non-zero
if ( totalLength % 2)
return std::min ( smallerArrayRightVal, biggerArrayRightVal );
// Even total length
return (std::max(smallerArrayLeftVal, biggerArrayLeftVal) +
std::min(smallerArrayRightVal, biggerArrayRightVal))/2.0f;
}else if( smallerArrayLeftVal > biggerArrayRightVal )
rightIdx = i - 1;
else
leftIdx = i + 1;
}
return 0.0;
}
float medianOfSortdArray(vector<int>& array1){
auto array1Size{array1.size()};
auto midPoint { array1Size/2 };
if (array1Size % 2)
return array1[midPoint];
if (array1Size > 2)
return (array1[midPoint] + array1[midPoint + 1])/2.0;
return (array1[0] + array1[1])/2.0;
}
int main(){
vector<vector<int>> inputs1 {{}, {2,5,6}, {1, 2,3}};
vector<vector<int>> inputs2 {{}, {8,9,10}, {1, 2}};
for(auto& vec1 : inputs1){
for(auto& vec2 : inputs2){
std::cout << "Array 1: ";
std::for_each(vec1.begin(), vec1.end(), [](int x){std::cout<< x <<" ";});
std::cout<<std::endl;
std::cout << "Array 2: ";
std::for_each(vec2.begin(), vec2.end(), [](int x){std::cout<< x <<" ";});
std::cout<<std::endl;
if (!vec1.empty() && !vec2.empty())
std::cout << "Median: "<< medianOf2SortdArrays(vec1, vec2) << std::endl;
else if (!vec1.empty())
std::cout << "Median: "<< medianOfSortdArray(vec1) << std::endl;
else if (!vec2.empty())
std::cout << "Median: "<< medianOfSortdArray(vec2) << std::endl;
else
std::cout << "Median: "<< 0.0 << std::endl;
}
}
return 0;
}