-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathppo.py
172 lines (134 loc) · 5.51 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from env import Cartpole
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import MultivariateNormal
# define network architecture here
class Net(nn.Module):
def __init__(self, num_obs=4, num_act=1):
super(Net, self).__init__()
# we use a shared backbone for both actor and critic
self.shared_net = nn.Sequential(
nn.Linear(num_obs, 256),
nn.LeakyReLU(),
nn.Linear(256, 256),
nn.LeakyReLU()
)
# mean and variance for Actor Network
self.to_mean = nn.Sequential(
nn.Linear(256, 256),
nn.LeakyReLU(),
nn.Linear(256, num_act),
nn.Tanh()
)
# value for Critic Network
self.to_value = nn.Sequential(
nn.Linear(256, 256),
nn.LeakyReLU(),
nn.Linear(256, 1),
)
def pi(self, x):
x = self.shared_net(x)
mu = self.to_mean(x)
return mu
def v(self, x):
x = self.shared_net(x)
x = self.to_value(x)
return x
class PPO:
def __init__(self, args):
self.args = args
# initialise parameters
self.env = Cartpole(args)
self.epoch = 5
self.lr = 3e-4
self.gamma = 0.99
self.lmbda = 0.95
self.clip = 0.3
self.rollout_size = 128
self.chunk_size = 32
self.mini_chunk_size = self.rollout_size // self.chunk_size
self.mini_batch_size = self.args.num_envs * self.mini_chunk_size
self.num_eval_freq = 100
self.data = []
self.score = 0
self.run_step = 0
self.optim_step = 0
self.net = Net(self.env.num_obs, self.env.num_act).to(args.sim_device)
self.action_var = torch.full((self.env.num_act,), 0.1).to(args.sim_device)
self.optim = torch.optim.Adam(self.net.parameters(), lr=self.lr)
def make_data(self):
# organise data and make batch
data = []
for _ in range(self.chunk_size):
obs_lst, a_lst, r_lst, next_obs_lst, log_prob_lst, done_lst = [], [], [], [], [], []
for _ in range(self.mini_chunk_size):
rollout = self.data.pop(0)
obs, action, reward, next_obs, log_prob, done = rollout
obs_lst.append(obs)
a_lst.append(action)
r_lst.append(reward.unsqueeze(-1))
next_obs_lst.append(next_obs)
log_prob_lst.append(log_prob)
done_lst.append(done.unsqueeze(-1))
obs, action, reward, next_obs, done = \
torch.stack(obs_lst), torch.stack(a_lst), torch.stack(r_lst), torch.stack(next_obs_lst), torch.stack(done_lst)
# compute reward-to-go (target)
with torch.no_grad():
target = reward + self.gamma * self.net.v(next_obs) * done
delta = target - self.net.v(obs)
# compute advantage
advantage_lst = []
advantage = 0.0
for delta_t in reversed(delta):
advantage = self.gamma * self.lmbda * advantage + delta_t
advantage_lst.insert(0, advantage)
advantage = torch.stack(advantage_lst)
log_prob = torch.stack(log_prob_lst)
mini_batch = (obs, action, log_prob, target, advantage)
data.append(mini_batch)
return data
def update(self):
# update actor and critic network
data = self.make_data()
for i in range(self.epoch):
for mini_batch in data:
obs, action, old_log_prob, target, advantage = mini_batch
mu = self.net.pi(obs)
cov_mat = torch.diag(self.action_var)
dist = MultivariateNormal(mu, cov_mat)
log_prob = dist.log_prob(action)
ratio = torch.exp(log_prob - old_log_prob).unsqueeze(-1)
surr1 = ratio * advantage
surr2 = torch.clamp(ratio, 1 - self.clip, 1 + self.clip) * advantage
loss = -torch.min(surr1, surr2) + F.smooth_l1_loss(self.net.v(obs), target)
self.optim.zero_grad()
loss.mean().backward()
nn.utils.clip_grad_norm_(self.net.parameters(), 1.0)
self.optim.step()
self.optim_step += 1
def run(self):
# collect data
obs = self.env.obs_buf.clone()
with torch.no_grad():
mu = self.net.pi(obs)
cov_mat = torch.diag(self.action_var)
dist = MultivariateNormal(mu, cov_mat)
action = dist.sample()
log_prob = dist.log_prob(action)
action = action.clip(-1, 1)
self.env.step(action)
next_obs, reward, done = self.env.obs_buf.clone(), self.env.reward_buf.clone(), self.env.reset_buf.clone()
self.env.reset()
self.data.append((obs, action, reward, next_obs, log_prob, 1 - done))
self.score += torch.mean(reward.float()).item() / self.num_eval_freq
self.action_var = torch.max(0.01 * torch.ones_like(self.action_var), self.action_var - 0.00002)
# training mode
if len(self.data) == self.rollout_size:
self.update()
# evaluation mode
if self.run_step % self.num_eval_freq == 0:
print('Steps: {:04d} | Opt Step: {:04d} | Reward {:.04f} | Action Var {:.04f}'
.format(self.run_step, self.optim_step, self.score, self.action_var[0].item()))
self.score = 0
self.run_step += 1