-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathdata.py
545 lines (462 loc) · 22.9 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import torch
import torch.utils.data
import torchaudio
import os, glob
from collections import Counter
import soundfile as sf
import numpy as np
import configparser
import textgrid
import multiprocessing
import json
import pandas as pd
from subprocess import call
class Config:
def __init__(self):
self.use_sincnet = True
def read_config(config_file):
config = Config()
parser = configparser.ConfigParser()
parser.read(config_file)
#[experiment]
config.seed=int(parser.get("experiment", "seed"))
config.folder=parser.get("experiment", "folder")
# Make a folder containing experiment information
if not os.path.isdir(config.folder):
os.mkdir(config.folder)
os.mkdir(os.path.join(config.folder, "pretraining"))
os.mkdir(os.path.join(config.folder, "training"))
call("cp " + config_file + " " + os.path.join(config.folder, "experiment.cfg"), shell=True)
#[phoneme_module]
config.use_sincnet=(parser.get("phoneme_module", "use_sincnet") == "True")
config.fs=int(parser.get("phoneme_module", "fs"))
config.cnn_N_filt=[int(x) for x in parser.get("phoneme_module", "cnn_N_filt").split(",")]
config.cnn_len_filt=[int(x) for x in parser.get("phoneme_module", "cnn_len_filt").split(",")]
config.cnn_stride=[int(x) for x in parser.get("phoneme_module", "cnn_stride").split(",")]
config.cnn_max_pool_len=[int(x) for x in parser.get("phoneme_module", "cnn_max_pool_len").split(",")]
config.cnn_act=[x for x in parser.get("phoneme_module", "cnn_act").split(",")]
config.cnn_drop=[float(x) for x in parser.get("phoneme_module", "cnn_drop").split(",")]
config.phone_rnn_num_hidden=[int(x) for x in parser.get("phoneme_module", "phone_rnn_num_hidden").split(",")]
config.phone_downsample_len=[int(x) for x in parser.get("phoneme_module", "phone_downsample_len").split(",")]
config.phone_downsample_type=[x for x in parser.get("phoneme_module", "phone_downsample_type").split(",")]
config.phone_rnn_drop=[float(x) for x in parser.get("phoneme_module", "phone_rnn_drop").split(",")]
config.phone_rnn_bidirectional=(parser.get("phoneme_module", "phone_rnn_bidirectional") == "True")
#[word_module]
config.word_rnn_num_hidden=[int(x) for x in parser.get("word_module", "word_rnn_num_hidden").split(",")]
config.word_downsample_len=[int(x) for x in parser.get("word_module", "word_downsample_len").split(",")]
config.word_downsample_type=[x for x in parser.get("word_module", "word_downsample_type").split(",")]
config.word_rnn_drop=[float(x) for x in parser.get("word_module", "word_rnn_drop").split(",")]
config.word_rnn_bidirectional=(parser.get("word_module", "word_rnn_bidirectional") == "True")
config.vocabulary_size=int(parser.get("word_module", "vocabulary_size"))
#[intent_module]
config.intent_rnn_num_hidden=[int(x) for x in parser.get("intent_module", "intent_rnn_num_hidden").split(",")]
config.intent_downsample_len=[int(x) for x in parser.get("intent_module", "intent_downsample_len").split(",")]
config.intent_downsample_type=[x for x in parser.get("intent_module", "intent_downsample_type").split(",")]
config.intent_rnn_drop=[float(x) for x in parser.get("intent_module", "intent_rnn_drop").split(",")]
config.intent_rnn_bidirectional=(parser.get("intent_module", "intent_rnn_bidirectional") == "True")
try:
config.intent_encoder_dim=int(parser.get("intent_module", "intent_encoder_dim"))
config.num_intent_encoder_layers=int(parser.get("intent_module", "num_intent_encoder_layers"))
config.intent_decoder_dim=int(parser.get("intent_module", "intent_decoder_dim"))
config.num_intent_decoder_layers=int(parser.get("intent_module", "num_intent_decoder_layers"))
config.intent_decoder_key_dim=int(parser.get("intent_module", "intent_decoder_key_dim"))
config.intent_decoder_value_dim=int(parser.get("intent_module", "intent_decoder_value_dim"))
except:
print("no seq2seq hyperparameters")
#[pretraining]
config.asr_path=parser.get("pretraining", "asr_path")
config.pretraining_type=int(parser.get("pretraining", "pretraining_type")) # 0 - no pre-training, 1 - phoneme pre-training, 2 - phoneme + word pre-training, 3 - word pre-training
if config.pretraining_type == 0: config.starting_unfreezing_index = 1 + len(config.word_rnn_num_hidden) + len(config.phone_rnn_num_hidden) + len(config.cnn_N_filt)
if config.pretraining_type == 1: config.starting_unfreezing_index = 1 + len(config.word_rnn_num_hidden)
if config.pretraining_type == 2: config.starting_unfreezing_index = 1
if config.pretraining_type == 3: config.starting_unfreezing_index = 1
config.pretraining_lr=float(parser.get("pretraining", "pretraining_lr"))
config.pretraining_batch_size=int(parser.get("pretraining", "pretraining_batch_size"))
config.pretraining_num_epochs=int(parser.get("pretraining", "pretraining_num_epochs"))
config.pretraining_length_mean=float(parser.get("pretraining", "pretraining_length_mean"))
config.pretraining_length_var=float(parser.get("pretraining", "pretraining_length_var"))
#[training]
config.slu_path=parser.get("training", "slu_path")
config.unfreezing_type=int(parser.get("training", "unfreezing_type"))
config.training_lr=float(parser.get("training", "training_lr"))
config.training_batch_size=int(parser.get("training", "training_batch_size"))
config.training_num_epochs=int(parser.get("training", "training_num_epochs"))
config.real_dataset_subset_percentage=float(parser.get("training", "real_dataset_subset_percentage"))
config.synthetic_dataset_subset_percentage=float(parser.get("training", "synthetic_dataset_subset_percentage"))
config.real_speaker_subset_percentage=float(parser.get("training", "real_speaker_subset_percentage"))
config.synthetic_speaker_subset_percentage=float(parser.get("training", "synthetic_speaker_subset_percentage"))
config.train_wording_path=parser.get("training", "train_wording_path")
if config.train_wording_path=="None": config.train_wording_path = None
config.test_wording_path=parser.get("training", "test_wording_path")
if config.test_wording_path=="None": config.test_wording_path = None
try:
config.augment = (parser.get("training", "augment") == "True")
except:
# old config file with no augmentation
config.augment = False
try:
config.seq2seq = (parser.get("training", "seq2seq") == "True")
except:
# old config file with no seq2seq
config.seq2seq = False
try:
config.dataset_upsample_factor = int(parser.get("training", "dataset_upsample_factor"))
except:
# old config file
config.dataset_upsample_factor = 1
# compute downsample factor (divide T by this number)
config.phone_downsample_factor = 1
for factor in config.cnn_stride + config.cnn_max_pool_len + config.phone_downsample_len:
config.phone_downsample_factor *= factor
config.word_downsample_factor = 1
for factor in config.cnn_stride + config.cnn_max_pool_len + config.phone_downsample_len + config.word_downsample_len:
config.word_downsample_factor *= factor
return config
def get_SLU_datasets(config):
"""
config: Config object (contains info about model and training)
"""
base_path = config.slu_path
# Split
if not config.seq2seq:
synthetic_train_df = pd.read_csv(os.path.join(base_path, "data", "synthetic_data.csv"))
real_train_df = pd.read_csv(os.path.join(base_path, "data", "train_data.csv"))
if "\"Unnamed: 0\"" in list(real_train_df): real_train_df = real_train_df.drop(columns="Unnamed: 0")
else:
synthetic_train_df = pd.read_csv(os.path.join(base_path, "data", "synthetic_data_seq2seq.csv"))
real_train_df = pd.read_csv(os.path.join(base_path, "data", "train_data_seq2seq.csv"))
if "\"Unnamed: 0\"" in list(real_train_df): real_train_df = real_train_df.drop(columns="Unnamed: 0")
# Select random subset of speakers
# First, check if "speakerId" is in the df columns
if "speakerId" in list(real_train_df) and "speakerId" in list(synthetic_train_df):
if config.real_speaker_subset_percentage < 1:
speakers = np.array(list(Counter(real_train_df.speakerId)))
np.random.shuffle(speakers)
selected_speaker_count = round(config.real_speaker_subset_percentage * len(speakers))
selected_speakers = speakers[:selected_speaker_count]
real_train_df = real_train_df[real_train_df["speakerId"].isin(selected_speakers)]
if config.synthetic_speaker_subset_percentage < 1:
speakers = np.array(list(Counter(synthetic_train_df.speakerId)))
np.random.shuffle(speakers)
selected_speaker_count = round(config.synthetic_speaker_subset_percentage * len(speakers))
selected_speakers = speakers[:selected_speaker_count]
synthetic_train_df = synthetic_train_df[synthetic_train_df["speakerId"].isin(selected_speakers)]
else:
if "speakerId" in list(real_train_df): real_train_df = real_train_df.drop(columns="speakerId")
if "speakerId" in list(synthetic_train_df): synthetic_train_df = synthetic_train_df.drop(columns="speakerId")
if config.real_speaker_subset_percentage < 1:
print("no speaker id listed in dataset .csv; ignoring speaker subset selection")
if config.synthetic_speaker_subset_percentage < 1:
print("no speaker id listed in dataset .csv; ignoring speaker subset selection")
# Select random subset of training data
if config.real_dataset_subset_percentage < 1:
subset_size = round(config.real_dataset_subset_percentage * len(real_train_df))
real_train_df = real_train_df.loc[np.random.choice(len(real_train_df), subset_size, replace=False)]
#real_train_df = real_train_df.set_index(np.arange(len(real_train_df)))
if config.synthetic_dataset_subset_percentage < 1:
subset_size = round(config.synthetic_dataset_subset_percentage * len(synthetic_train_df))
synthetic_train_df = synthetic_train_df.loc[np.random.choice(len(synthetic_train_df), subset_size, replace=False)]
#synthetic_train_df = synthetic_train_df.set_index(np.arange(len(synthetic_train_df)))
train_df = pd.concat([synthetic_train_df, real_train_df]).reset_index()
if not config.seq2seq:
valid_df = pd.read_csv(os.path.join(base_path, "data", "valid_data.csv"))
test_df = pd.read_csv(os.path.join(base_path, "data", "test_data.csv"))
else:
valid_df = pd.read_csv(os.path.join(base_path, "data", "valid_data_seq2seq.csv"))
test_df = pd.read_csv(os.path.join(base_path, "data", "test_data_seq2seq.csv"))
if not config.seq2seq:
# Get list of slots
Sy_intent = {"action": {}, "object": {}, "location": {}}
values_per_slot = []
for slot in ["action", "object", "location"]:
slot_values = Counter(train_df[slot])
for idx,value in enumerate(slot_values):
Sy_intent[slot][value] = idx
values_per_slot.append(len(slot_values))
config.values_per_slot = values_per_slot
config.Sy_intent = Sy_intent
else: #seq2seq
import string
all_chars = "".join(train_df.loc[i]["semantics"] for i in range(len(train_df))) + string.printable # all printable chars; TODO: unicode?
all_chars = list(set(all_chars))
Sy_intent = ["<sos>"]
Sy_intent += all_chars
Sy_intent.append("<eos>")
config.Sy_intent = Sy_intent
# If certain phrases are specified, only use those phrases
if config.train_wording_path is not None:
with open(config.train_wording_path, "r") as f:
train_wordings = [line.strip() for line in f.readlines()]
train_df = train_df.loc[train_df.transcription.isin(train_wordings)]
train_df = train_df.set_index(np.arange(len(train_df)))
if config.test_wording_path is not None:
with open(config.test_wording_path, "r") as f:
test_wordings = [line.strip() for line in f.readlines()]
valid_df = valid_df.loc[valid_df.transcription.isin(test_wordings)]
valid_df = valid_df.set_index(np.arange(len(valid_df)))
test_df = test_df.loc[test_df.transcription.isin(test_wordings)]
test_df = test_df.set_index(np.arange(len(test_df)))
# Get number of phonemes
if os.path.isfile(os.path.join(config.folder, "pretraining", "phonemes.txt")):
Sy_phoneme = []
with open(os.path.join(config.folder, "pretraining", "phonemes.txt"), "r") as f:
for line in f.readlines():
if line.rstrip("\n") != "": Sy_phoneme.append(line.rstrip("\n"))
config.num_phonemes = len(Sy_phoneme)
else:
print("No phoneme file found.")
# Create dataset objects
train_dataset = SLUDataset(train_df, base_path, Sy_intent, config,upsample_factor=config.dataset_upsample_factor)
valid_dataset = SLUDataset(valid_df, base_path, Sy_intent, config)
test_dataset = SLUDataset(test_df, base_path, Sy_intent, config)
return train_dataset, valid_dataset, test_dataset
# taken from https://github.com/jfsantos/maracas/blob/master/maracas/maracas.py
def rms_energy(x):
return 10*np.log10((1e-12 + x.dot(x))/len(x))
class SLUDataset(torch.utils.data.Dataset):
def __init__(self, df, base_path, Sy_intent, config, upsample_factor=1):
"""
df:
Sy_intent: Dictionary (transcript --> slot values)
config: Config object (contains info about model and training)
"""
self.df = df
self.base_path = base_path
self.Sy_intent = Sy_intent
self.upsample_factor = upsample_factor
self.augment = False #augment
self.SNRs = [0,5,10,15,20]
self.seq2seq = config.seq2seq
self.loader = torch.utils.data.DataLoader(self, batch_size=config.training_batch_size, num_workers=multiprocessing.cpu_count(), shuffle=True, collate_fn=CollateWavsSLU(self.Sy_intent, self.seq2seq))
def __len__(self):
#if self.augment: return len(self.df)*2 # second half of dataset is augmented
return len(self.df) * self.upsample_factor
def __getitem__(self, idx):
#augment = ((idx / len(self.df)) > 1) and self.augment
#true_idx = idx
idx = idx % len(self.df)
wav_path = os.path.join(self.base_path, self.df.loc[idx].path)
effect = torchaudio.sox_effects.SoxEffectsChain()
effect.set_input_file(wav_path)
augment = False
if augment:
# speed/tempo
min_speed = 0.9; max_speed = 1.1; speed_range = max_speed-min_speed
speed = speed_range * np.random.rand(1)[0] + min_speed
effect.append_effect_to_chain("tempo", speed)
del speed
# volume
min_gain = -10; max_gain = 10; gain_range = max_gain-min_gain
gain_dB = gain_range * np.random.rand(1)[0] + min_gain
gain = 10**(gain_dB/20)
effect.append_effect_to_chain("vol", gain)
del gain_dB
wav, fs = effect.sox_build_flow_effects()
x = wav[0].numpy()
del wav, effect
if augment:
# crop
min_length = round(x.shape[0]*0.9); max_length = round(x.shape[0]*1.1); length_range=max_length-min_length
length = int(length_range * np.random.rand(1)[0] + min_length)
start = int((x.shape[0]-length)/2)
if start < 0:
left_padding = -start
right_padding = length-(x.shape[0]-start)
x = np.pad(x,(left_padding, right_padding),mode="constant")
else:
start += np.random.randint(low=-start, high=1, size=1)[0]
x = x[start:start+length]
# noise (taken from https://github.com/jfsantos/maracas/blob/master/maracas/maracas.py)
snr = np.random.choice(self.SNRs, 1, p=[1/len(self.SNRs) for _ in range(len(self.SNRs))])[0]
noise = np.random.randn(len(x))
N_dB = rms_energy(noise)
S_dB = rms_energy(x)
N_new = S_dB - snr
noise_scaled = 10**(N_new/20) * noise / 10**(N_dB/20)
x = x + noise_scaled
if not self.seq2seq:
y_intent = []
for slot in ["action", "object", "location"]:
value = self.df.loc[idx][slot]
y_intent.append(self.Sy_intent[slot][value])
else:
# need sos, eos
y_intent = [self.Sy_intent.index("<sos>")]
y_intent += [self.Sy_intent.index(c) for c in self.df.loc[idx]["semantics"]]
y_intent.append(self.Sy_intent.index("<eos>"))
return (x, y_intent)
def one_hot(letters, S):
"""
letters : LongTensor of shape (batch size, sequence length)
S : integer
Convert batch of integer letter indices to one-hot vectors of dimension S (# of possible letters).
"""
out = torch.zeros(letters.shape[0], letters.shape[1], S)
for i in range(0, letters.shape[0]):
for t in range(0, letters.shape[1]):
out[i, t, letters[i,t]] = 1
return out
class CollateWavsSLU:
def __init__(self, Sy_intent, seq2seq):
self.Sy_intent = Sy_intent
self.num_labels = len(self.Sy_intent)
self.seq2seq = seq2seq
if self.seq2seq:
self.EOS = self.Sy_intent.index("<eos>")
def __call__(self, batch):
"""
batch: list of tuples (input wav, intent labels)
Returns a minibatch of wavs and labels as Tensors.
"""
x = []; y_intent = []
batch_size = len(batch)
for index in range(batch_size):
x_,y_intent_ = batch[index]
x.append(torch.tensor(x_).float())
y_intent.append(torch.tensor(y_intent_).long())
# pad all sequences to have same length
if not self.seq2seq:
T = max([len(x_) for x_ in x])
for index in range(batch_size):
x_pad_length = (T - len(x[index]))
x[index] = torch.nn.functional.pad(x[index], (0,x_pad_length))
x = torch.stack(x)
y_intent = torch.stack(y_intent)
return (x,y_intent)
else: # seq2seq
T = max([len(x_) for x_ in x])
U = max([len(y_intent_) for y_intent_ in y_intent])
for index in range(batch_size):
x_pad_length = (T - len(x[index]))
x[index] = torch.nn.functional.pad(x[index], (0,x_pad_length))
y_pad_length = (U - len(y_intent[index]))
y_intent[index] = torch.nn.functional.pad(y_intent[index], (0,y_pad_length), value=self.EOS)
x = torch.stack(x)
y_intent = torch.stack(y_intent)
y_intent = one_hot(y_intent, self.num_labels)
return (x,y_intent)
def get_ASR_datasets(config):
"""
Assumes that the data directory contains the following two directories:
"audio" : wav files (split into train-clean, train-other, ...)
"text" : alignments for each wav
config: Config object (contains info about model and training)
"""
base_path = config.asr_path
# Get only files with a label
train_textgrid_paths = glob.glob(base_path + "/text/train*/*/*/*.TextGrid")
train_wav_paths = [path.replace("text", "audio").replace(".TextGrid", ".wav") for path in train_textgrid_paths]
valid_textgrid_paths = glob.glob(base_path + "/text/dev*/*/*/*.TextGrid")
valid_wav_paths = [path.replace("text", "audio").replace(".TextGrid", ".wav") for path in valid_textgrid_paths]
test_textgrid_paths = glob.glob(base_path + "/text/test*/*/*/*.TextGrid")
test_wav_paths = [path.replace("text", "audio").replace(".TextGrid", ".wav") for path in test_textgrid_paths]
# Get list of phonemes and words
if os.path.isfile(os.path.join(config.folder, "pretraining", "phonemes.txt")) and os.path.isfile(os.path.join(config.folder, "pretraining", "words.txt")):
Sy_phoneme = []
with open(os.path.join(config.folder, "pretraining", "phonemes.txt"), "r") as f:
for line in f.readlines():
if line.rstrip("\n") != "": Sy_phoneme.append(line.rstrip("\n"))
config.num_phonemes = len(Sy_phoneme)
Sy_word = []
with open(os.path.join(config.folder, "pretraining", "words.txt"), "r") as f:
for line in f.readlines():
Sy_word.append(line.rstrip("\n"))
else:
print("Getting vocabulary...")
phoneme_counter = Counter()
word_counter = Counter()
for path in valid_textgrid_paths:
tg = textgrid.TextGrid()
tg.read(path)
phoneme_counter.update([phone.mark.rstrip("0123456789") for phone in tg.getList("phones")[0] if phone.mark != ''])
word_counter.update([word.mark for word in tg.getList("words")[0]]) #if word.mark != ''])
Sy_phoneme = list(phoneme_counter)
Sy_word = [w[0] for w in word_counter.most_common(config.vocabulary_size)]
config.num_phonemes = len(Sy_phoneme)
with open(os.path.join(config.folder, "pretraining", "phonemes.txt"), "w") as f:
for phoneme in Sy_phoneme:
f.write(phoneme + "\n")
with open(os.path.join(config.folder, "pretraining", "words.txt"), "w") as f:
for word in Sy_word:
f.write(word + "\n")
print("Done.")
# Create dataset objects
train_dataset = ASRDataset(train_wav_paths, train_textgrid_paths, Sy_phoneme, Sy_word, config)
valid_dataset = ASRDataset(valid_wav_paths, valid_textgrid_paths, Sy_phoneme, Sy_word, config)
test_dataset = ASRDataset(test_wav_paths, test_textgrid_paths, Sy_phoneme, Sy_word, config)
return train_dataset, valid_dataset, test_dataset
class ASRDataset(torch.utils.data.Dataset):
def __init__(self, wav_paths, textgrid_paths, Sy_phoneme, Sy_word, config):
"""
wav_paths: list of strings (wav file paths)
textgrid_paths: list of strings (textgrid for each wav file)
Sy_phoneme: list of strings (all possible phonemes)
Sy_word: list of strings (all possible words)
config: Config object (contains info about model and training)
"""
self.wav_paths = wav_paths # list of wav file paths
self.textgrid_paths = textgrid_paths # list of textgrid file paths
self.length_mean = config.pretraining_length_mean
self.length_var = config.pretraining_length_var
self.Sy_phoneme = Sy_phoneme
self.Sy_word = Sy_word
self.phone_downsample_factor = config.phone_downsample_factor
self.word_downsample_factor = config.word_downsample_factor
self.loader = torch.utils.data.DataLoader(self, batch_size=config.pretraining_batch_size, num_workers=multiprocessing.cpu_count(), shuffle=True, collate_fn=CollateWavsASR())
def __len__(self):
return len(self.wav_paths)
def __getitem__(self, idx):
x, fs = sf.read(self.wav_paths[idx])
tg = textgrid.TextGrid()
tg.read(self.textgrid_paths[idx])
y_phoneme = []
for phoneme in tg.getList("phones")[0]:
duration = phoneme.maxTime - phoneme.minTime
phoneme_index = self.Sy_phoneme.index(phoneme.mark.rstrip("0123456789")) if phoneme.mark.rstrip("0123456789") in self.Sy_phoneme else -1
if phoneme.mark == '': phoneme_index = -1
y_phoneme += [phoneme_index] * round(duration * fs)
y_word = []
for word in tg.getList("words")[0]:
duration = word.maxTime - word.minTime
word_index = self.Sy_word.index(word.mark) if word.mark in self.Sy_word else -1
# if word.mark == '': word_index = -1
y_word += [word_index] * round(duration * fs)
# Cut a snippet of length random_length from the audio
random_length = round(fs * max(self.length_mean + self.length_var * torch.randn(1).item(), 0.5))
if len(x) <= random_length:
start = 0
else:
start = torch.randint(low=0, high=len(x)-random_length, size=(1,)).item()
end = start + random_length
x = x[start:end]
y_phoneme = y_phoneme[start:end:self.phone_downsample_factor]
y_word = y_word[start:end:self.word_downsample_factor]
return (x, y_phoneme, y_word)
class CollateWavsASR:
def __call__(self, batch):
"""
batch: list of tuples (input wav, phoneme labels, word labels)
Returns a minibatch of wavs and labels as Tensors.
"""
x = []; y_phoneme = []; y_word = []
batch_size = len(batch)
for index in range(batch_size):
x_,y_phoneme_, y_word_ = batch[index]
x.append(torch.tensor(x_).float())
y_phoneme.append(torch.tensor(y_phoneme_).long())
y_word.append(torch.tensor(y_word_).long())
# pad all sequences to have same length
T = max([len(x_) for x_ in x])
U_phoneme = max([len(y_phoneme_) for y_phoneme_ in y_phoneme])
U_word = max([len(y_word_) for y_word_ in y_word])
for index in range(batch_size):
x_pad_length = (T - len(x[index]))
x[index] = torch.nn.functional.pad(x[index], (0,x_pad_length))
y_pad_length = (U_phoneme - len(y_phoneme[index]))
y_phoneme[index] = torch.nn.functional.pad(y_phoneme[index], (0,y_pad_length), value=-1)
y_pad_length = (U_word - len(y_word[index]))
y_word[index] = torch.nn.functional.pad(y_word[index], (0,y_pad_length), value=-1)
x = torch.stack(x)
y_phoneme = torch.stack(y_phoneme)
y_word = torch.stack(y_word)
return (x,y_phoneme, y_word)