-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrun.py
112 lines (104 loc) · 4.26 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import torch
import argparse
import torch.nn as nn
from nn import MiniResNet
from tools import AverageMeter
from progressbar import ProgressBar
from tools import seed_everything
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.optim as optim
from trainingmonitor import TrainingMonitor
epochs = 20
batch_size = 128
seed = 42
arch = 'CNNNet2'
learning_rate = 0.01
device = torch.device("cuda:0")
seed_everything(seed)
def train(train_loader):
pbar = ProgressBar(n_batch=len(train_loader))
train_loss = AverageMeter()
train_acc = AverageMeter()
count = 0
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output, loss = model(data,y = target,loss_fn = nn.CrossEntropyLoss())
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct = pred.eq(target.view_as(pred)).sum().item()
loss.backward()
optimizer.step()
count += data.size(0)
train_acc.update(correct, n=1)
pbar.batch_step(batch_idx=batch_idx, info={'loss': loss.item(), 'acc': correct / data.size(0)},
bar_type='Training')
train_loss.update(loss.item(), n=1)
print(' ')
return {'loss': train_loss.avg,
'acc': train_acc.sum / count}
def test(test_loader):
pbar = ProgressBar(n_batch=len(test_loader))
valid_loss = AverageMeter()
valid_acc = AverageMeter()
model.eval()
count = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(test_loader):
data, target = data.to(device), target.to(device)
output, loss = model(data,y = target,loss_fn = nn.CrossEntropyLoss())
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct = pred.eq(target.view_as(pred)).sum().item()
valid_loss.update(loss, n=data.size(0))
valid_acc.update(correct, n=1)
count += data.size(0)
pbar.batch_step(batch_idx=batch_idx, info={}, bar_type='Testing')
return {'valid_loss': valid_loss.avg,
'valid_acc': valid_acc.sum / count}
data = {
'train': datasets.CIFAR10(
root='./data', download=True,
transform=transforms.Compose([
# transforms.RandomCrop((32, 32), padding=4),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]
)
),
'valid': datasets.CIFAR10(
root='./data', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]
)
)
}
loaders = {
'train': DataLoader(data['train'], batch_size=128, shuffle=True,
num_workers=10, pin_memory=True,
drop_last=True),
'valid': DataLoader(data['valid'], batch_size=128,
num_workers=10, pin_memory=True,
drop_last=False)
}
parser = argparse.ArgumentParser(description='CIFAR10')
parser.add_argument("--model", type=str, default='ResNet18')
parser.add_argument('--drop_p', default=0.5, type=float)
parser.add_argument("--drop_num", default=0, type=int, help='number of multi sample dropout')
args = parser.parse_args()
model = MiniResNet(num_classes=10,dropout_num = args.drop_num,dropout_p=args.drop_p)
model.to(device)
arch = arch+f"_{args.drop_num}samples"
train_monitor = TrainingMonitor(file_dir='./', arch=arch)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(1, epochs + 1):
train_log = train(loaders['train'])
valid_log = test(loaders['valid'])
logs = dict(train_log, **valid_log)
show_info = f'\nEpoch: {epoch} - ' + "-".join([f' {key}: {value:.4f} ' for key, value in logs.items()])
print(show_info)
if epoch % 10 == 0:
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate * 0.1
train_monitor.epoch_step(logs)