-
Notifications
You must be signed in to change notification settings - Fork 151
/
Copy pathprepare_lm_data_mask.py
289 lines (266 loc) · 22.2 KB
/
prepare_lm_data_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os
import json
import random
import collections
from tools.common import logger, init_logger
from argparse import ArgumentParser
from tools.common import seed_everything
from model.tokenization_bert import BertTokenizer
from callback.progressbar import ProgressBar
from pathlib import Path
MaskedLmInstance = collections.namedtuple("MaskedLmInstance", ["index", "label"])
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
"""Truncates a pair of sequences to a maximum sequence length."""
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_num_tokens:
break
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
assert len(trunc_tokens) >= 1
# We want to sometimes truncate from the front and sometimes from the
# back to add more randomness and avoid biases.
if random.random() < 0.5:
del trunc_tokens[0]
else:
trunc_tokens.pop()
def create_instances_from_document(all_documents, document_index, max_seq_length, short_seq_prob,
masked_lm_prob, max_predictions_per_seq, vocab_words):
"""Creates `TrainingInstance`s for a single document.
This method is changed to create sentence-order prediction (SOP) followed by idea from paper of ALBERT, 2019-08-28, brightmart
"""
document = all_documents[document_index] # 得到一个文档
# Account for [CLS], [SEP], [SEP]
max_num_tokens = max_seq_length - 3
# We *usually* want to fill up the entire sequence since we are padding
# to `max_seq_length` anyways, so short sequences are generally wasted
# computation. However, we *sometimes*
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
# sequences to minimize the mismatch between pre-training and fine-tuning.
# The `target_seq_length` is just a rough target however, whereas
# `max_seq_length` is a hard limit.
target_seq_length = max_num_tokens
if random.random() < short_seq_prob: # 有一定的比例,如10%的概率,我们使用比较短的序列长度,以缓解预训练的长序列和调优阶段(可能的)短序列的不一致情况
target_seq_length = random.randint(2, max_num_tokens)
# We DON'T just concatenate all of the tokens from a document into a long
# sequence and choose an arbitrary split point because this would make the
# next sentence prediction task too easy. Instead, we split the input into
# segments "A" and "B" based on the actual "sentences" provided by the user
# input.
# 设法使用实际的句子,而不是任意的截断句子,从而更好的构造句子连贯性预测的任务
instances = []
current_chunk = [] # 当前处理的文本段,包含多个句子
current_length = 0
i = 0
# print("###document:",document) # 一个document可以是一整篇文章、新闻、词条等. document:[['是', '爷', '们', ',', '就', '得', '给', '媳', '妇', '幸', '福'], ['关', '注', '【', '晨', '曦', '教', '育', '】', ',', '获', '取', '育', '儿', '的', '智', '慧', ',', '与', '孩', '子', '一', '同', '成', '长', '!'], ['方', '法', ':', '打', '开', '微', '信', '→', '添', '加', '朋', '友', '→', '搜', '号', '→', '##he', '##bc', '##x', '##jy', '##→', '关', '注', '!', '我', '是', '一', '个', '爷', '们', ',', '孝', '顺', '是', '做', '人', '的', '第', '一', '准', '则', '。'], ['甭', '管', '小', '时', '候', '怎', '么', '跟', '家', '长', '犯', '混', '蛋', ',', '长', '大', '了', ',', '就', '底', '报', '答', '父', '母', ',', '以', '后', '我', '媳', '妇', '也', '必', '须', '孝', '顺', '。'], ['我', '是', '一', '个', '爷', '们', ',', '可', '以', '花', '心', ',', '可', '以', '好', '玩', '。'], ['但', '我', '一', '定', '会', '找', '一', '个', '管', '的', '住', '我', '的', '女', '人', ',', '和', '我', '一', '起', '生', '活', '。'], ['28', '岁', '以', '前', '在', '怎', '么', '玩', '都', '行', ',', '但', '我', '最', '后', '一', '定', '会', '找', '一', '个', '勤', '俭', '持', '家', '的', '女', '人', '。'], ['我', '是', '一', '爷', '们', ',', '我', '不', '会', '让', '自', '己', '的', '女', '人', '受', '一', '点', '委', '屈', ',', '每', '次', '把', '她', '抱', '在', '怀', '里', ',', '看', '她', '洋', '溢', '着', '幸', '福', '的', '脸', ',', '我', '都', '会', '引', '以', '为', '傲', ',', '这', '特', '么', '就', '是', '我', '的', '女', '人', '。'], ['我', '是', '一', '爷', '们', ',', '干', '什', '么', '也', '不', '能', '忘', '了', '自', '己', '媳', '妇', ',', '就', '算', '和', '哥', '们', '一', '起', '喝', '酒', ',', '喝', '到', '很', '晚', ',', '也', '要', '提', '前', '打', '电', '话', '告', '诉', '她', ',', '让', '她', '早', '点', '休', '息', '。'], ['我', '是', '一', '爷', '们', ',', '我', '媳', '妇', '绝', '对', '不', '能', '抽', '烟', ',', '喝', '酒', '还', '勉', '强', '过', '得', '去', ',', '不', '过', '该', '喝', '的', '时', '候', '喝', ',', '不', '该', '喝', '的', '时', '候', ',', '少', '扯', '纳', '极', '薄', '蛋', '。'], ['我', '是', '一', '爷', '们', ',', '我', '媳', '妇', '必', '须', '听', '我', '话', ',', '在', '人', '前', '一', '定', '要', '给', '我', '面', '子', ',', '回', '家', '了', '咱', '什', '么', '都', '好', '说', '。'], ['我', '是', '一', '爷', '们', ',', '就', '算', '难', '的', '吃', '不', '上', '饭', '了', ',', '都', '不', '张', '口', '跟', '媳', '妇', '要', '一', '分', '钱', '。'], ['我', '是', '一', '爷', '们', ',', '不', '管', '上', '学', '还', '是', '上', '班', ',', '我', '都', '会', '送', '媳', '妇', '回', '家', '。'], ['我', '是', '一', '爷', '们', ',', '交', '往', '不', '到', '1', '年', ',', '绝', '对', '不', '会', '和', '媳', '妇', '提', '过', '分', '的', '要', '求', ',', '我', '会', '尊', '重', '她', '。'], ['我', '是', '一', '爷', '们', ',', '游', '戏', '永', '远', '比', '不', '上', '我', '媳', '妇', '重', '要', ',', '只', '要', '媳', '妇', '发', '话', ',', '我', '绝', '对', '唯', '命', '是', '从', '。'], ['我', '是', '一', '爷', '们', ',', '上', 'q', '绝', '对', '是', '为', '了', '等', '媳', '妇', ',', '所', '有', '暧', '昧', '的', '心', '情', '只', '为', '她', '一', '个', '女', '人', '而', '写', ',', '我', '不', '一', '定', '会', '经', '常', '写', '日', '志', ',', '可', '是', '我', '会', '告', '诉', '全', '世', '界', ',', '我', '很', '爱', '她', '。'], ['我', '是', '一', '爷', '们', ',', '不', '一', '定', '要', '经', '常', '制', '造', '浪', '漫', '、', '偶', '尔', '过', '个', '节', '日', '也', '要', '送', '束', '玫', '瑰', '花', '给', '媳', '妇', '抱', '回', '家', '。'], ['我', '是', '一', '爷', '们', ',', '手', '机', '会', '24', '小', '时', '为', '她', '开', '机', ',', '让', '她', '半', '夜', '痛', '经', '的', '时', '候', ',', '做', '恶', '梦', '的', '时', '候', ',', '随', '时', '可', '以', '联', '系', '到', '我', '。'], ['我', '是', '一', '爷', '们', ',', '我', '会', '经', '常', '带', '媳', '妇', '出', '去', '玩', ',', '她', '不', '一', '定', '要', '和', '我', '所', '有', '的', '哥', '们', '都', '认', '识', ',', '但', '见', '面', '能', '说', '的', '上', '话', '就', '行', '。'], ['我', '是', '一', '爷', '们', ',', '我', '会', '和', '媳', '妇', '的', '姐', '妹', '哥', '们', '搞', '好', '关', '系', ',', '让', '她', '们', '相', '信', '我', '一', '定', '可', '以', '给', '我', '媳', '妇', '幸', '福', '。'], ['我', '是', '一', '爷', '们', ',', '吵', '架', '后', '、', '也', '要', '主', '动', '打', '电', '话', '关', '心', '她', ',', '咱', '是', '一', '爷', '们', ',', '给', '媳', '妇', '服', '个', '软', ',', '道', '个', '歉', '怎', '么', '了', '?'], ['我', '是', '一', '爷', '们', ',', '绝', '对', '不', '会', '嫌', '弃', '自', '己', '媳', '妇', ',', '拿', '她', '和', '别', '人', '比', ',', '说', '她', '这', '不', '如', '人', '家', ',', '纳', '不', '如', '人', '家', '的', '。'], ['我', '是', '一', '爷', '们', ',', '陪', '媳', '妇', '逛', '街', '时', ',', '碰', '见', '熟', '人', ',', '无', '论', '我', '媳', '妇', '长', '的', '好', '看', '与', '否', ',', '我', '都', '会', '大', '方', '的', '介', '绍', '。'], ['谁', '让', '咱', '爷', '们', '就', '好', '这', '口', '呢', '。'], ['我', '是', '一', '爷', '们', ',', '我', '想', '我', '会', '给', '我', '媳', '妇', '最', '好', '的', '幸', '福', '。'], ['【', '我', '们', '重', '在', '分', '享', '。'], ['所', '有', '文', '字', '和', '美', '图', ',', '来', '自', '网', '络', ',', '晨', '欣', '教', '育', '整', '理', '。'], ['对', '原', '文', '作', '者', ',', '表', '示', '敬', '意', '。'], ['】', '关', '注', '晨', '曦', '教', '育', '[UNK]', '[UNK]', '晨', '曦', '教', '育', '(', '微', '信', '号', ':', 'he', '##bc', '##x', '##jy', ')', '。'], ['打', '开', '微', '信', ',', '扫', '描', '二', '维', '码', ',', '关', '注', '[UNK]', '晨', '曦', '教', '育', '[UNK]', ',', '获', '取', '更', '多', '育', '儿', '资', '源', '。'], ['点', '击', '下', '面', '订', '阅', '按', '钮', '订', '阅', ',', '会', '有', '更', '多', '惊', '喜', '哦', '!']]
while i < len(document): # 从文档的第一个位置开始,按个往下看
segment = document[
i] # segment是列表,代表的是按字分开的一个完整句子,如 segment=['我', '是', '一', '爷', '们', ',', '我', '想', '我', '会', '给', '我', '媳', '妇', '最', '好', '的', '幸', '福', '。']
# segment = get_new_segment(segment) # whole word mask for chinese: 结合分词的中文的whole mask设置即在需要的地方加上“##”
current_chunk.append(segment) # 将一个独立的句子加入到当前的文本块中
current_length += len(segment) # 累计到为止位置接触到句子的总长度
if i == len(document) - 1 or current_length >= target_seq_length:
# 如果累计的序列长度达到了目标的长度,或当前走到了文档结尾==>构造并添加到“A[SEP]B“中的A和B中;
if current_chunk: # 如果当前块不为空
# `a_end` is how many segments from `current_chunk` go into the `A`
# (first) sentence.
a_end = 1
if len(current_chunk) >= 2: # 当前块,如果包含超过两个句子,取当前块的一部分作为“A[SEP]B“中的A部分
a_end = random.randint(1, len(current_chunk) - 1)
# 将当前文本段中选取出来的前半部分,赋值给A即tokens_a
tokens_a = []
for j in range(a_end):
tokens_a.extend(current_chunk[j])
# 构造“A[SEP]B“中的B部分(有一部分是正常的当前文档中的后半部;在原BERT的实现中一部分是随机的从另一个文档中选取的,)
tokens_b = []
for j in range(a_end, len(current_chunk)):
tokens_b.extend(current_chunk[j])
# 有百分之50%的概率交换一下tokens_a和tokens_b的位置
# print("tokens_a length1:",len(tokens_a))
# print("tokens_b length1:",len(tokens_b)) # len(tokens_b) = 0
if len(tokens_a) == 0 or len(tokens_b) == 0: continue
if random.random() < 0.5: # 交换一下tokens_a和tokens_b
is_random_next = True
temp = tokens_a
tokens_a = tokens_b
tokens_b = temp
else:
is_random_next = False
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens)
assert len(tokens_a) >= 1
assert len(tokens_b) >= 1
# 把tokens_a & tokens_b加入到按照bert的风格,即以[CLS]tokens_a[SEP]tokens_b[SEP]的形式,结合到一起,作为最终的tokens; 也带上segment_ids,前面部分segment_ids的值是0,后面部分的值是1.
tokens = ["[CLS]"] + tokens_a + ["[SEP]"] + tokens_b + ["[SEP]"]
# The segment IDs are 0 for the [CLS] token, the A tokens and the first [SEP]
# They are 1 for the B tokens and the final [SEP]
segment_ids = [0 for _ in range(len(tokens_a) + 2)] + [1 for _ in range(len(tokens_b) + 1)]
# 创建masked LM的任务的数据 Creates the predictions for the masked LM objective
tokens, masked_lm_positions, masked_lm_labels = create_masked_lm_predictions(
tokens, masked_lm_prob, max_predictions_per_seq, vocab_words)
instance = {
"tokens": tokens,
"segment_ids": segment_ids,
"is_random_next": is_random_next,
"masked_lm_positions": masked_lm_positions,
"masked_lm_labels": masked_lm_labels}
instances.append(instance)
current_chunk = [] # 清空当前块
current_length = 0 # 重置当前文本块的长度
i += 1 # 接着文档中的内容往后看
return instances
def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, vocab_list):
"""Creates the predictions for the masked LM objective. This is mostly copied from the Google BERT repo, but
with several refactors to clean it up and remove a lot of unnecessary variables."""
cand_indices = []
for (i, token) in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]":
continue
# Whole Word Masking means that if we mask all of the wordpieces
# corresponding to an original word. When a word has been split into
# WordPieces, the first token does not have any marker and any subsequence
# tokens are prefixed with ##. So whenever we see the ## token, we
# append it to the previous set of word indexes.
#
# Note that Whole Word Masking does *not* change the training code
# at all -- we still predict each WordPiece independently, softmaxed
# over the entire vocabulary.
cand_indices.append(i)
num_to_mask = min(max_predictions_per_seq, max(1, int(round(len(tokens) * masked_lm_prob))))
random.shuffle(cand_indices)
mask_indices = sorted(random.sample(cand_indices, num_to_mask))
masked_token_labels = []
for index in mask_indices:
# 80% of the time, replace with [MASK]
if random.random() < 0.8:
masked_token = "[MASK]"
else:
# 10% of the time, keep original
if random.random() < 0.5:
masked_token = tokens[index]
# 10% of the time, replace with random word
else:
masked_token = random.choice(vocab_list)
masked_token_labels.append(MaskedLmInstance(index=index, label=tokens[index]))
tokens[index] = masked_token
assert len(masked_token_labels) <= num_to_mask
masked_token_labels = sorted(masked_token_labels, key=lambda x: x.index)
mask_indices = [p.index for p in masked_token_labels]
masked_labels = [p.label for p in masked_token_labels]
return tokens, mask_indices, masked_labels
def create_training_instances(input_file, tokenizer, max_seq_len, short_seq_prob,
masked_lm_prob, max_predictions_per_seq):
"""Create `TrainingInstance`s from raw text."""
all_documents = [[]]
# Input file format:
# (1) One sentence per line. These should ideally be actual sentences, not
# entire paragraphs or arbitrary spans of text. (Because we use the
# sentence boundaries for the "next sentence prediction" task).
# (2) Blank lines between documents. Document boundaries are needed so
# that the "next sentence prediction" task doesn't span between documents.
f = open(input_file, 'r')
lines = f.readlines()
pbar = ProgressBar(n_total=len(lines), desc='read data')
for line_cnt, line in enumerate(lines):
line = line.strip()
# Empty lines are used as document delimiters
if not line:
all_documents.append([])
tokens = tokenizer.tokenize(line)
if tokens:
all_documents[-1].append(tokens)
pbar(step=line_cnt)
print(' ')
# Remove empty documents
all_documents = [x for x in all_documents if x]
random.shuffle(all_documents)
vocab_words = list(tokenizer.vocab.keys())
instances = []
pbar = ProgressBar(n_total=len(all_documents), desc='create instances')
for document_index in range(len(all_documents)):
instances.extend(
create_instances_from_document(
all_documents, document_index, max_seq_len, short_seq_prob,
masked_lm_prob, max_predictions_per_seq, vocab_words))
pbar(step=document_index)
print(' ')
ex_idx = 0
while ex_idx < 5:
instance = instances[ex_idx]
logger.info("-------------------------Example-----------------------")
logger.info(f"id: {ex_idx}")
logger.info(f"tokens: {' '.join([str(x) for x in instance['tokens']])}")
logger.info(f"masked_lm_labels: {' '.join([str(x) for x in instance['masked_lm_labels']])}")
logger.info(f"segment_ids: {' '.join([str(x) for x in instance['segment_ids']])}")
logger.info(f"masked_lm_positions: {' '.join([str(x) for x in instance['masked_lm_positions']])}")
logger.info(f"is_random_next : {instance['is_random_next']}")
ex_idx += 1
random.shuffle(instances)
return instances
def main():
parser = ArgumentParser()
## Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True)
parser.add_argument("--vocab_path", default=None, type=str, required=True)
parser.add_argument("--output_dir", default=None, type=str, required=True)
parser.add_argument('--data_name', default='albert', type=str)
parser.add_argument("--do_data", default=False, action='store_true')
parser.add_argument("--do_split", default=False, action='store_true')
parser.add_argument("--do_lower_case", default=False, action='store_true')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument("--line_per_file", default=1000000000, type=int)
parser.add_argument("--file_num", type=int, default=10,
help="Number of dynamic masking to pregenerate (with different masks)")
parser.add_argument("--max_seq_len", type=int, default=128)
parser.add_argument("--short_seq_prob", type=float, default=0.1,
help="Probability of making a short sentence as a training example")
parser.add_argument("--masked_lm_prob", type=float, default=0.15,
help="Probability of masking each token for the LM task")
parser.add_argument("--max_predictions_per_seq", type=int, default=20, # 128 * 0.15
help="Maximum number of tokens to mask in each sequence")
args = parser.parse_args()
seed_everything(args.seed)
args.data_dir = Path(args.data_dir)
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
init_logger(log_file=args.output_dir +"pregenerate_training_data.log")
logger.info("pregenerate training data parameters:\n %s", args)
tokenizer = BertTokenizer(vocab_file=args.vocab_path, do_lower_case=args.do_lower_case)
# split big file
if args.do_split:
corpus_path = args.data_dir / "corpus/corpus.txt"
split_save_path = args.data_dir / "/corpus/train"
if not split_save_path.exists():
split_save_path.mkdir(exist_ok=True)
line_per_file = args.line_per_file
command = f'split -a 4 -l {line_per_file} -d {corpus_path} {split_save_path}/shard_'
os.system(f"{command}")
# generator train data
if args.do_data:
data_path = args.data_dir / "corpus/train"
files = sorted([f for f in data_path.parent.iterdir() if f.exists() and '.txt' in str(f)])
for idx in range(args.file_num):
logger.info(f"pregenetate {args.data_name}_file_{idx}.json")
save_filename = data_path / f"{args.data_name}_file_{idx}.json"
num_instances = 0
with save_filename.open('w') as fw:
for file_idx in range(len(files)):
file_path = files[file_idx]
file_examples = create_training_instances(input_file=file_path,
tokenizer=tokenizer,
max_seq_len=args.max_seq_len,
short_seq_prob=args.short_seq_prob,
masked_lm_prob=args.masked_lm_prob,
max_predictions_per_seq=args.max_predictions_per_seq)
file_examples = [json.dumps(instance) for instance in file_examples]
for instance in file_examples:
fw.write(instance + '\n')
num_instances += 1
metrics_file = data_path / f"{args.data_name}_file_{idx}_metrics.json"
print(f"num_instances: {num_instances}")
with metrics_file.open('w') as metrics_file:
metrics = {
"num_training_examples": num_instances,
"max_seq_len": args.max_seq_len
}
metrics_file.write(json.dumps(metrics))
if __name__ == '__main__':
main()