Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Missing "dvs_gesture_dataset " Class or Package #1

Open
Po0ria opened this issue Aug 12, 2022 · 3 comments
Open

Missing "dvs_gesture_dataset " Class or Package #1

Po0ria opened this issue Aug 12, 2022 · 3 comments

Comments

@Po0ria
Copy link

Po0ria commented Aug 12, 2022

I am trying to reproduce your results but I can't find the "dvs_gesture_dataset" class or package that you imported in classification.py at line 11:
from dvs_gesture_dataset import SparseDvsGestureDataset

@loiccordone
Copy link
Owner

loiccordone commented Aug 12, 2022

Hello,
Thanks for your interest in our work!
Indeed, sorry I forgot to add the file to the repo. It should be good now, the gesture_dataset.py file is now available.

@Po0ria
Copy link
Author

Po0ria commented Aug 12, 2022

Thank you for reply. I am having dependency issues (more specifically for torch-metrics package) and I would appreciate if you could let me know the versions of python and required packages

@Po0ria
Copy link
Author

Po0ria commented Aug 25, 2022

Well I managed to get the dataset ready but I am facing other issues regarding lightning torch. Here is my error log:
/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/apex/pyprof/__init__.py:5: FutureWarning: pyprof will be removed by the end of June, 2022 warnings.warn("pyprof will be removed by the end of June, 2022", FutureWarning) /afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:445: LightningDeprecationWarning: Setting Trainer(gpus=[0])is deprecated in v1.7 and will be removed in v2.0. Please useTrainer(accelerator='gpu', devices=[0])instead. rank_zero_deprecation( Namespace(device=0, precision=16, b=64, sample_size=1500000, T=150, image_shape=(128, 128), dataset='dvsg', path='DvsGesture', model='sparse-snn', pretrained=None, lr=0.01, epochs=20, train=True, test=False, save_ckpt=True) File loaded. File loaded. Using 16bit native Automatic Mixed Precision (AMP) GPU available: True (cuda), used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUsTrainer(limit_train_batches=1.0)was configured so 100% of the batches per epoch will be used..Trainer(limit_val_batches=1.0)` was configured so 100% of the batches will be used..
Missing logger folder: /afs/crc.nd.edu/user/p/ptaheri/Private/benchmarkSNN/sparse-spiking-neural-networks/lightning_logs
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]

| Name | Type | Params


0 | train_acc | Accuracy | 0
1 | val_acc | Accuracy | 0
2 | test_acc | Accuracy | 0
3 | train_acc_by_class | Accuracy | 0
4 | val_acc_by_class | Accuracy | 0
5 | test_acc_by_class | Accuracy | 0
6 | train_confmat | ConfusionMatrix | 0
7 | val_confmat | ConfusionMatrix | 0
8 | test_confmat | ConfusionMatrix | 0
9 | model | SparseSNN | 13.9 K


13.9 K Trainable params
0 Non-trainable params
13.9 K Total params
0.028 Total estimated model params size (MB)

Sanity Checking: 0it [00:00, ?it/s]/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:219: PossibleUserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the num_workers argument(try 24 which is the number of cpus on this machine) in theDataLoader` init to improve performance.
rank_zero_warn(

Sanity Checking: 0%| | 0/2 [00:00<?, ?it/s]
Sanity Checking DataLoader 0: 0%| | 0/2 [00:00<?, ?it/s]/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/torch/_tensor.py:575: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.
To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at /opt/conda/conda-bld/pytorch_1623448238472/work/aten/src/ATen/native/BinaryOps.cpp:467.)
return torch.floor_divide(self, other)
/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/utilities/data.py:86: UserWarning: Trying to infer the batch_size from an ambiguous collection. The batch size we found is 3470962. To avoid any miscalculations, use self.log(..., batch_size=batch_size).
warning_cache.warn(

Sanity Checking DataLoader 0: 50%|█████ | 1/2 [00:02<00:02, 2.91s/it]/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/utilities/data.py:86: UserWarning: Trying to infer the batch_size from an ambiguous collection. The batch size we found is 3359203. To avoid any miscalculations, use self.log(..., batch_size=batch_size).
warning_cache.warn(

Sanity Checking DataLoader 0: 100%|██████████| 2/2 [00:04<00:00, 2.17s/it]
val accuracy: 10.16%
val confusion matrix:
Traceback (most recent call last):
File "/afs/crc.nd.edu/user/p/ptaheri/Private/benchmarkSNN/sparse-spiking-neural-networks/classification.py", line 93, in
main()
File "/afs/crc.nd.edu/user/p/ptaheri/Private/benchmarkSNN/sparse-spiking-neural-networks/classification.py", line 88, in main
trainer.fit(module, train_dataloader, test_dataloader)
File "/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 696, in fit
self._call_and_handle_interrupt(
File "/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 650, in _call_and_handle_interrupt
return trainer_fn(*args, **kwargs)
File "/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 737, in _fit_impl
results = self._run(model, ckpt_path=self.ckpt_path)
File "/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 1168, in _run
results = self._run_stage()
File "/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 1254, in _run_stage
return self._run_train()
File "/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 1276, in _run_train
self._run_sanity_check()
File "/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 1345, in _run_sanity_check
val_loop.run()
File "/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/loops/loop.py", line 207, in run
output = self.on_run_end()
File "/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/loops/dataloader/evaluation_loop.py", line 187, in on_run_end
self._on_evaluation_epoch_end()
File "/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/loops/dataloader/evaluation_loop.py", line 299, in _on_evaluation_epoch_end
self.trainer._call_lightning_module_hook(hook_name)
File "/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 1552, in _call_lightning_module_hook
output = fn(*args, **kwargs)
File "/afs/crc.nd.edu/user/p/ptaheri/Private/benchmarkSNN/sparse-spiking-neural-networks/classification_module.py", line 110, in on_validation_epoch_end
self.on_mode_epoch_end(mode="val")
File "/afs/crc.nd.edu/user/p/ptaheri/Private/benchmarkSNN/sparse-spiking-neural-networks/classification_module.py", line 98, in on_mode_epoch_end
self.log(f'{mode}_confmat', confmat)
File "/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/core/module.py", line 415, in log
apply_to_collection(value, torch.Tensor, self.__check_numel_1, name)
File "/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/utilities/apply_func.py", line 100, in apply_to_collection
return function(data, *args, **kwargs)
File "/afs/crc.nd.edu/user/p/ptaheri/.conda/envs/sparse-SNN/lib/python3.9/site-packages/pytorch_lightning/core/module.py", line 553, in __check_numel_1
raise ValueError(
ValueError: self.log(val_confmat, tensor([[0, 0, 0, 0, 0, 2, 0, 8, 0, 0, 1], [1, 0, 0, 1, 1, 1, 0, 1, 6, 0, 0], [0, 2, 1, 0, 0, 0, 1, 4, 0, 0, 3], [0, 1, 0, 2, 2, 0, 0, 0, 5, 0, 1], [0, 1, 0, 0, 3, 0, 0, 0, 4, 0, 3], [0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 7], [0, 3, 0, 0, 0, 0, 1, 2, 0, 0, 5], [0, 0, 0, 4, 1, 1, 2, 2, 4, 1, 6], [0, 0, 1, 2, 1, 1, 0, 1, 2, 2, 0], [0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 6], [1, 1, 1, 0, 1, 0, 0, 0, 4, 0, 2]], device='cuda:0')) was called, but the tensor must have a single element. You can try doing `self.log(val_confmat, tensor([[0, 0, 0, 0, 0, 2, 0, 8, 0, 0, 1],
[1, 0, 0, 1, 1, 1, 0, 1, 6, 0, 0],
[0, 2, 1, 0, 0, 0, 1, 4, 0, 0, 3],
[0, 1, 0, 2, 2, 0, 0, 0, 5, 0, 1],
[0, 1, 0, 0, 3, 0, 0, 0, 4, 0, 3],
[0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 7],
[0, 3, 0, 0, 0, 0, 1, 2, 0, 0, 5],
[0, 0, 0, 4, 1, 1, 2, 2, 4, 1, 6],
[0, 0, 1, 2, 1, 1, 0, 1, 2, 2, 0],
[0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 6],
[1, 1, 1, 0, 1, 0, 0, 0, 4, 0, 2]], device='cuda:0').mean())``

@Po0ria Po0ria closed this as completed Aug 25, 2022
@Po0ria Po0ria reopened this Aug 25, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants