Skip to content

Latest commit

 

History

History
27 lines (24 loc) · 999 Bytes

README.md

File metadata and controls

27 lines (24 loc) · 999 Bytes

Pruning Image Classifiers

Here we provide the code for pruning ConvNeXt and ViT. This part is built on the dropout repository.

Environment

We additionally install timm for loading pretrained image classifiers.

pip install timm==0.4.12

Download Weights

Run the script download_weights.sh to download pretrained weights for ConvNeXt-B, DeiT-B and ViT-L, which we used in the paper.

Usage

Here is the command for pruning ConvNeXt/ViT models:

python main.py --model [ARCH] \
    --data_path [PATH to ImageNet] \
    --resume [PATH to the pretrained weights] \
    --prune_metric wanda \
    --prune_granularity row \
    --sparsity 0.5 

where:

  • --model: network architecture, choices [convnext_base, deit_base_patch16_224, vit_large_patch16_224].
  • --resume: model path to downloaded pretrained weights.
  • --prune_metric: [magnitude, wanda].
  • --prune_granularity: [layer, row].