-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathcoarse.cfg
357 lines (337 loc) · 13.8 KB
/
coarse.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: Transonic inviscid flow around a NACA0012 airfoil %
% Author: Thomas D. Economon %
% Institution: Stanford University %
% Date: 2014.06.11 %
% File Version 6.2.0 "Falcon" %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY,
% POISSON_EQUATION)
PHYSICAL_PROBLEM= EULER
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO
% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.8
%
% Angle of attack (degrees)
AOA= 1.25
%
% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows)
FREESTREAM_PRESSURE= 101325.0
%
% Free-stream temperature (273.15 K by default)
FREESTREAM_TEMPERATURE= 273.15
% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------%
%
% Ratio of specific heats (1.4 (air), only for compressible flows)
GAMMA_VALUE= 1.4
%
% Specific gas constant (287.87 J/kg*K (air), only for compressible flows)
GAS_CONSTANT= 287.87
% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 0.25
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional moment
REF_LENGTH= 1.0
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 1.0
%
% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE,
% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE)
REF_DIMENSIONALIZATION= DIMENSIONAL
% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------%
%
% Marker of the Euler boundary (NONE = no marker)
MARKER_EULER= ( airfoil )
%
% Marker of the far field (NONE = no marker)
MARKER_FAR= ( farfield )
% ------------------------ SURFACES IDENTIFICATION ----------------------------%
%
% Marker(s) of the surface in the surface flow solution file
MARKER_PLOTTING = ( airfoil )
%
% Marker(s) of the surface where the non-dimensional coefficients are evaluated.
MARKER_MONITORING = ( airfoil )
%
% Marker(s) of the surface where obj. func. (design problem) will be evaluated
MARKER_DESIGNING = ( airfoil )
% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES
%
% Objective function in optimization problem (DRAG, LIFT, SIDEFORCE, MOMENT_X,
% MOMENT_Y, MOMENT_Z, EFFICIENCY,
% EQUIVALENT_AREA, NEARFIELD_PRESSURE,
% FORCE_X, FORCE_Y, FORCE_Z, THRUST,
% TORQUE, FREE_SURFACE, TOTAL_HEATFLUX,
% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE,
% INVERSE_DESIGN_HEATFLUX)
% OBJECTIVE_FUNCTION= DRAG
%
% Courant-Friedrichs-Lewy condition of the finest grid
%CFL_NUMBER= 4.0
CFL_NUMBER= 1.0
%CFL_NUMBER=0.1
%
% Number of total iterations
EXT_ITER=200
ITER= 200
% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver for implicit formulations (BCGSTAB, FGMRES)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS)
LINEAR_SOLVER_PREC= LU_SGS
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-6
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 5
% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-Grid Levels (0 = no multi-grid)
MGLEVEL= 2
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= W_CYCLE
%
% Multi-Grid PreSmoothing Level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-Grid PostSmoothing Level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 1.0
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 1.0
% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= JST
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_FLOW= YES
%
% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG,
% BARTH_JESPERSEN, VAN_ALBADA_EDGE)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% 2nd and 4th order artificial dissipation coefficients
JST_SENSOR_COEFF= ( 0.5, 0.02 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT
% ---------------- ADJOINT-FLOW NUMERICAL METHOD DEFINITION -------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, ROE)
CONV_NUM_METHOD_ADJFLOW= JST
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the adjoint flow equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_ADJFLOW= YES
%
% Slope limiter (NONE, VENKATAKRISHNAN, BARTH_JESPERSEN, VAN_ALBADA_EDGE,
% SHARP_EDGES, WALL_DISTANCE)
SLOPE_LIMITER_ADJFLOW= NONE
%
% Reduction factor of the CFL coefficient in the adjoint problem
CFL_REDUCTION_ADJFLOW= 0.5
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT)
TIME_DISCRE_ADJFLOW= EULER_IMPLICIT
% ----------------------- DESIGN VARIABLE PARAMETERS --------------------------%
%
% Kind of deformation (NO_DEFORMATION, TRANSLATION, ROTATION, SCALE,
% FFD_SETTING, FFD_NACELLE
% FFD_CONTROL_POINT, FFD_CAMBER, FFD_THICKNESS, FFD_TWIST
% FFD_CONTROL_POINT_2D, FFD_CAMBER_2D, FFD_THICKNESS_2D, FFD_TWIST_2D,
% HICKS_HENNE, SURFACE_BUMP)
DV_KIND= HICKS_HENNE
%
% Marker of the surface in which we are going apply the shape deformation
DV_MARKER= ( airfoil )
%
% Parameters of the shape deformation
% - NO_DEFORMATION ( 1.0 )
% - TRANSLATION ( x_Disp, y_Disp, z_Disp ), as a unit vector
% - ROTATION ( x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
% - SCALE ( 1.0 )
% - ANGLE_OF_ATTACK ( 1.0 )
% - FFD_SETTING ( 1.0 )
% - FFD_CONTROL_POINT ( FFD_BoxTag, i_Ind, j_Ind, k_Ind, x_Disp, y_Disp, z_Disp )
% - FFD_NACELLE ( FFD_BoxTag, rho_Ind, theta_Ind, phi_Ind, rho_Disp, phi_Disp )
% - FFD_GULL ( FFD_BoxTag, j_Ind )
% - FFD_ANGLE_OF_ATTACK ( FFD_BoxTag, 1.0 )
% - FFD_CAMBER ( FFD_BoxTag, i_Ind, j_Ind )
% - FFD_THICKNESS ( FFD_BoxTag, i_Ind, j_Ind )
% - FFD_TWIST ( FFD_BoxTag, j_Ind, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
% - FFD_CONTROL_POINT_2D ( FFD_BoxTag, i_Ind, j_Ind, x_Disp, y_Disp )
% - FFD_CAMBER_2D ( FFD_BoxTag, i_Ind )
% - FFD_THICKNESS_2D ( FFD_BoxTag, i_Ind )
% - FFD_TWIST_2D ( FFD_BoxTag, x_Orig, y_Orig )
% - HICKS_HENNE ( Lower Surface (0)/Upper Surface (1)/Only one Surface (2), x_Loc )
% - SURFACE_BUMP ( x_Start, x_End, x_Loc )
DV_PARAM= ( 1, 0.5 )
%
% Value of the shape deformation
DV_VALUE= 0.01
% ------------------------ GRID DEFORMATION PARAMETERS ------------------------%
%
% Number of smoothing iterations for FEA mesh deformation
DEFORM_LINEAR_ITER= 500
%
% Number of nonlinear deformation iterations (surface deformation increments)
DEFORM_NONLINEAR_ITER= 1
%
% Minimum residual criteria for the linear solver convergence of grid deformation
DEFORM_LINEAR_SOLVER_ERROR= 1E-14
%
% Print the residuals during mesh deformation to the console (YES, NO)
DEFORM_CONSOLE_OUTPUT= YES
%
% Type of element stiffness imposed for FEA mesh deformation (INVERSE_VOLUME,
% WALL_DISTANCE, CONSTANT_STIFFNESS)
DEFORM_STIFFNESS_TYPE= INVERSE_VOLUME
%
% Visualize the surface deformation (NO, YES)
VISUALIZE_SURFACE_DEF= NO
%
% Visualize the volume deformation (NO, YES)
VISUALIZE_VOLUME_DEF= NO
% --------------------------- CONVERGENCE PARAMETERS --------------------------%
% Convergence criteria (CAUCHY, RESIDUAL)
%
CONV_CRITERIA= RESIDUAL
%
% Residual reduction (order of magnitude with respect to the initial value)
RESIDUAL_REDUCTION= 6
%
% Min value of the residual (log10 of the residual)
RESIDUAL_MINVAL= -8
%
% Start Cauchy criteria at iteration number
STARTCONV_ITER= 10
%
% Number of elements to apply the criteria
CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CAUCHY_EPS= 1E-6
%
% Function to apply the criteria (LIFT, DRAG, SENS_GEOMETRY, SENS_MACH,
% DELTA_LIFT, DELTA_DRAG)
CAUCHY_FUNC_FLOW= DRAG
% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
% Mesh input file
%MESH_FILENAME=mesh_NACA0012_xcoarse.su2
MESH_FILENAME=passed_as_flag_to_train.py.su2
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
MESH_FORMAT= SU2
%
% Mesh output file
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
SOLUTION_FLOW_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format (TECPLOT, PARAVIEW, TECPLOT_BINARY)
%OUTPUT_FORMAT= TECPLOT_BINARY
%
% Output file convergence history (w/o extension)
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FLOW_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
VOLUME_FLOW_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output Objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FLOW_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Writing solution file frequency
WRT_SOL_FREQ= 1000
%
% Writing convergence history frequency
WRT_CON_FREQ= 1000
% --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------%
% Available flow based objective functions or constraint functions
% DRAG, LIFT, SIDEFORCE, EFFICIENCY,
% FORCE_X, FORCE_Y, FORCE_Z,
% MOMENT_X, MOMENT_Y, MOMENT_Z,
% THRUST, TORQUE, FIGURE_OF_MERIT,
% EQUIVALENT_AREA, NEARFIELD_PRESSURE,
% TOTAL_HEATFLUX, MAXIMUM_HEATFLUX,
% INVERSE_DESIGN_PRESSURE, INVERSE_DESIGN_HEATFLUX,
%
% Available geometrical based objective functions or constraint functions
% AIRFOIL_AREA, AIRFOIL_THICKNESS, AIRFOIL_CHORD, AIRFOIL_TOC, AIRFOIL_AOA,
% WING_VOLUME, WING_MIN_THICKNESS, WING_MAX_THICKNESS, WING_MAX_CHORD, WING_MIN_TOC, WING_MAX_TWIST, WING_MAX_CURVATURE, WING_MAX_DIHEDRAL
% STATION#_WIDTH, STATION#_AREA, STATION#_THICKNESS, STATION#_CHORD, STATION#_TOC,
% STATION#_TWIST (where # is the index of the station defined in GEO_LOCATION_STATIONS)
%
% Available design variables
% HICKS_HENNE ( 1, Scale | Mark. List | Lower(0)/Upper(1) side, x_Loc )
% NACA_4DIGITS ( 4, Scale | Mark. List | 1st digit, 2nd digit, 3rd and 4th digit )
% TRANSLATION ( 5, Scale | Mark. List | x_Disp, y_Disp, z_Disp )
% ROTATION ( 6, Scale | Mark. List | x_Axis, y_Axis, z_Axis, x_Turn, y_Turn, z_Turn )
% FFD_CONTROL_POINT_2D ( 15, Scale | Mark. List | FFD_Box_ID, i_Ind, j_Ind, x_Mov, y_Mov )
% FFD_CAMBER_2D ( 16, Scale | Mark. List | FFD_Box_ID, i_Ind )
% FFD_THICKNESS_2D ( 17, Scale | Mark. List | FFD_Box_ID, i_Ind )
%
% Optimization objective function with scaling factor
% ex= Objective * Scale
% OPT_OBJECTIVE= DRAG * 0.001
%
% Optimization constraint functions with scaling factors, separated by semicolons
% ex= (Objective = Value ) * Scale, use '>','<','='
% OPT_CONSTRAINT= ( LIFT > 0.328188 ) * 0.001; ( MOMENT_Z > 0.034068 ) * 0.001; ( AIRFOIL_THICKNESS > 0.11 ) * 0.001
%
% Optimization design variables, separated by semicolons
% DEFINITION_DV= ( 1, 1.0 | airfoil | 0, 0.05 ); ( 1, 1.0 | airfoil | 0, 0.10 ); ( 1, 1.0 | airfoil | 0, 0.15 ); ( 1, 1.0 | airfoil | 0, 0.20 ); ( 1, 1.0 | airfoil | 0, 0.25 ); ( 1, 1.0 | airfoil | 0, 0.30 ); ( 1, 1.0 | airfoil | 0, 0.35 ); ( 1, 1.0 | airfoil | 0, 0.40 ); ( 1, 1.0 | airfoil | 0, 0.45 ); ( 1, 1.0 | airfoil | 0, 0.50 ); ( 1, 1.0 | airfoil | 0, 0.55 ); ( 1, 1.0 | airfoil | 0, 0.60 ); ( 1, 1.0 | airfoil | 0, 0.65 ); ( 1, 1.0 | airfoil | 0, 0.70 ); ( 1, 1.0 | airfoil | 0, 0.75 ); ( 1, 1.0 | airfoil | 0, 0.80 ); ( 1, 1.0 | airfoil | 0, 0.85 ); ( 1, 1.0 | airfoil | 0, 0.90 ); ( 1, 1.0 | airfoil | 0, 0.95 ); ( 1, 1.0 | airfoil | 1, 0.05 ); ( 1, 1.0 | airfoil | 1, 0.10 ); ( 1, 1.0 | airfoil | 1, 0.15 ); ( 1, 1.0 | airfoil | 1, 0.20 ); ( 1, 1.0 | airfoil | 1, 0.25 ); ( 1, 1.0 | airfoil | 1, 0.30 ); ( 1, 1.0 | airfoil | 1, 0.35 ); ( 1, 1.0 | airfoil | 1, 0.40 ); ( 1, 1.0 | airfoil | 1, 0.45 ); ( 1, 1.0 | airfoil | 1, 0.50 ); ( 1, 1.0 | airfoil | 1, 0.55 ); ( 1, 1.0 | airfoil | 1, 0.60 ); ( 1, 1.0 | airfoil | 1, 0.65 ); ( 1, 1.0 | airfoil | 1, 0.70 ); ( 1, 1.0 | airfoil | 1, 0.75 ); ( 1, 1.0 | airfoil | 1, 0.80 ); ( 1, 1.0 | airfoil | 1, 0.85 ); ( 1, 1.0 | airfoil | 1, 0.90 ); ( 1, 1.0 | airfoil | 1, 0.95 )
DIFF_INPUTS= COORDS_X, COORDS_Y, AOA, MACH
DIFF_OUTPUTS= VEL_X, VEL_Y, PRESSURE