diff --git a/setup.py b/setup.py index 38ba1657..9283f70e 100644 --- a/setup.py +++ b/setup.py @@ -51,6 +51,8 @@ def readme(): "pynndescent >= 0.5", "tbb >= 2019.0", "tqdm", + "mkl-service", + "psutil" ], "extras_require": { "plot": [ diff --git a/umap/spectral.py b/umap/spectral.py index 7e9a97f6..9dca8346 100644 --- a/umap/spectral.py +++ b/umap/spectral.py @@ -7,7 +7,11 @@ import scipy.sparse import scipy.sparse.csgraph import sklearn.decomposition - +import os +import mkl +import numpy.ctypeslib as npct +import ctypes +import psutil from sklearn.manifold import SpectralEmbedding from sklearn.metrics import pairwise_distances from sklearn.metrics.pairwise import _VALID_METRICS as SKLEARN_PAIRWISE_VALID_METRICS @@ -15,6 +19,9 @@ from umap.distances import pairwise_special_metric, SPECIAL_METRICS from umap.sparse import SPARSE_SPECIAL_METRICS, sparse_named_distances +proc = psutil.Process(os.getpid()) +mkl_rtc = [lib.path for lib in proc.memory_maps() if 'mkl_rt' in lib.path][0] + def component_layout( data, @@ -278,6 +285,285 @@ def multi_component_layout( return result +def mkl_eigenvalue(*args, **kwargs): + print("Inside mkl_eigenvalue") + use_fp32 = os.environ.get("UMAP_MKL_FP32", "1") != "0" + if use_fp32: + return mkl_eigenvalue_s(*args, **kwargs) + return mkl_eigenvalue_d(*args, **kwargs) + + +def mkl_eigenvalue_d(spM, k0, whichE, ncv, tol, maxiter): + + + #mkl_rt = ctypes.cdll.LoadLibrary(mkl_rtc) + mkl_rt = ctypes.CDLL(mkl_rtc) + # types + # MKL_INT is np.intc if MKL_INTERFACE is LP64 + array_1d_mkl_int_t = npct.ndpointer(dtype=np.intc, ndim=1, flags="CONTIGUOUS") + array_1d_double_t = npct.ndpointer(dtype=np.double, ndim=1, flags="CONTIGUOUS") + + # set up function mkl_sparse_ee_init + py_mkl_sparse_ee_init = mkl_rt.mkl_sparse_ee_init + py_mkl_sparse_ee_init.restupe = None + py_mkl_sparse_ee_init.argtypes = [array_1d_mkl_int_t] + + sparse_matrix_t = ctypes.c_void_p + sparse_status_t = ctypes.c_int # enum + sparse_operation_t = ctypes.c_int # enum + sparse_matrix_type_t = ctypes.c_int # enum + sparse_index_base_t = ctypes.c_int # enum + sparse_fill_mode_t = ctypes.c_int # enum + sparse_diag_type_t = ctypes.c_int # enum + sparse_layout_t = ctypes.c_int # enum + verbose_mode_t = ctypes.c_int # enum + sparse_memory_usage = ctypes.c_int # enum + sparse_request_t = ctypes.c_int # enum + + class SparseMatrixDescr(ctypes.Structure): + _fields_ = [ + ("type", sparse_matrix_type_t), + ("mode", sparse_fill_mode_t), + ("diag", sparse_diag_type_t), + ] + + # setup mkl_sparse_d_create_csr + py_mkl_sparse_d_create_csr = mkl_rt.mkl_sparse_d_create_csr + py_mkl_sparse_d_create_csr.restype = sparse_status_t + py_mkl_sparse_d_create_csr.argtypes = [ + ctypes.POINTER(ctypes.c_void_p), # sparse_matrix_t *A + sparse_index_base_t, # enum + ctypes.c_int, # MKL_INT rows + ctypes.c_int, # MKL_INT cols + array_1d_mkl_int_t, # MKL_INT *row_start + array_1d_mkl_int_t, # MKL_INT *row_end + array_1d_mkl_int_t, # MKL_INT *col_indx + array_1d_double_t, # double * vals + ] + + py_mkl_sparse_d_ev = mkl_rt.mkl_sparse_d_ev + py_mkl_sparse_d_ev.restype = ctypes.c_int + py_mkl_sparse_d_ev.argtypes = [ + ctypes.c_char_p, # char * whichE + array_1d_mkl_int_t, # MKL_INT * pm + sparse_matrix_t, # sparse_matrix_t A, + SparseMatrixDescr, # matrix_desc + ctypes.c_int, # k0 + ctypes.POINTER(ctypes.c_int), # MKL_INT *k, + array_1d_double_t, # double * E + array_1d_double_t, # double * X + array_1d_double_t, # double * res + ] + + py_mkl_sparse_destroy = mkl_rt.mkl_sparse_destroy + py_mkl_sparse_destroy.returntype = None + py_mkl_sparse_destroy.argtypes = [sparse_matrix_t] + + one = ctypes.c_double(1.0) + zero = ctypes.c_double(0.0) + tol = ctypes.c_int(int(tol)) + compute_vectors = ctypes.c_int(1) + xgemmC = ctypes.c_char(b"T") + xgemmN = ctypes.c_char(b"N") + # whichE = ctypes.c_char(b'S') + whichE = ctypes.c_char(whichE) + whichV = ctypes.c_char(b"L") + num_lanczos_vectors = ctypes.c_int(int(ncv)) + maxiter = ctypes.c_int(int(maxiter)) + + k = ctypes.c_int(0) # to be computed by MKL + SPARSE_MATRIX_TYPE_GENERAL = 20 + descr = SparseMatrixDescr(type=SPARSE_MATRIX_TYPE_GENERAL) + mkl_csrA = sparse_matrix_t() + + pm = np.zeros((128,), dtype=np.intc) + py_mkl_sparse_ee_init(pm) + pm[1] = tol.value + pm[2] = 1 + pm[3] = num_lanczos_vectors.value + pm[4] = maxiter.value + pm[6] = compute_vectors.value + pm[ + 7 + ] = 1 # 0 = relative, 1 = Use absolute stopping critertia. Iteration is stopped if norm(Ax - lambda*x) < 10^(-pm[1]) + + k0 = ctypes.c_int(int(k0)) # how many eigenvalues to compute + + SPARSE_INDEX_BASE_ZERO = 0 + # mkl_sparse_d_create_csr ( &mkl_csrA, SPARSE_INDEX_BASE_ONE, N, M, ia, ia+1, ja, a ); + csr_create_status = py_mkl_sparse_d_create_csr( + ctypes.byref(mkl_csrA), + SPARSE_INDEX_BASE_ZERO, + spM.shape[0], + spM.shape[1], + spM.indptr[:-1], + spM.indptr[1:], + spM.indices, + spM.data, + ) + + eigenvals = np.zeros((np.max(k0.value),), dtype=np.float64) + resid = np.empty_like(eigenvals) + X = np.empty((k0.value, spM.shape[0]), dtype=np.float64) + X_flat = X.reshape((-1)) + # X_flat = np.ones((k0.value * spM.shape[0]), dtype=np.double) + + info = py_mkl_sparse_d_ev( + ctypes.byref(whichE), # 1 + pm, # 3 + mkl_csrA, # 4 + descr, + k0, + ctypes.byref(k), + eigenvals, + X_flat, + resid, + ) + + X = X_flat.reshape((k0.value, int(X_flat.shape[0] / k0.value))) + X = X.T + X[:, 0] = -X[:, 0] + X[:, 1] = -X[:, 1] + return eigenvals, X + + +def mkl_eigenvalue_s(spM, k0, whichE, ncv, tol, maxiter): # single-precision version + + + # mkl_rt = ctypes.cdll.LoadLibrary(mkl_rtc) + mkl_rt = ctypes.CDLL(mkl_rtc) + # types + # MKL_INT is np.intc if MKL_INTERFACE is LP64 + array_1d_mkl_int_t = npct.ndpointer(dtype=np.intc, ndim=1, flags="CONTIGUOUS") + array_1d_float_t = npct.ndpointer(dtype=np.float32, ndim=1, flags="CONTIGUOUS") + + # set up function mkl_sparse_ee_init + py_mkl_sparse_ee_init = mkl_rt.mkl_sparse_ee_init + py_mkl_sparse_ee_init.restupe = None + py_mkl_sparse_ee_init.argtypes = [array_1d_mkl_int_t] + + sparse_matrix_t = ctypes.c_void_p + sparse_status_t = ctypes.c_int # enum + sparse_operation_t = ctypes.c_int # enum + sparse_matrix_type_t = ctypes.c_int # enum + sparse_index_base_t = ctypes.c_int # enum + sparse_fill_mode_t = ctypes.c_int # enum + sparse_diag_type_t = ctypes.c_int # enum + sparse_layout_t = ctypes.c_int # enum + verbose_mode_t = ctypes.c_int # enum + sparse_memory_usage = ctypes.c_int # enum + sparse_request_t = ctypes.c_int # enum + + class SparseMatrixDescr(ctypes.Structure): + _fields_ = [ + ("type", sparse_matrix_type_t), + ("mode", sparse_fill_mode_t), + ("diag", sparse_diag_type_t), + ] + + # setup mkl_sparse_d_create_csr + py_mkl_sparse_s_create_csr = mkl_rt.mkl_sparse_s_create_csr + py_mkl_sparse_s_create_csr.restype = sparse_status_t + py_mkl_sparse_s_create_csr.argtypes = [ + ctypes.POINTER(ctypes.c_void_p), # sparse_matrix_t *A + sparse_index_base_t, # enum + ctypes.c_int, # MKL_INT rows + ctypes.c_int, # MKL_INT cols + array_1d_mkl_int_t, # MKL_INT *row_start + array_1d_mkl_int_t, # MKL_INT *row_end + array_1d_mkl_int_t, # MKL_INT *col_indx + array_1d_float_t, # float * vals + ] + + py_mkl_sparse_s_ev = mkl_rt.mkl_sparse_s_ev + py_mkl_sparse_s_ev.restype = ctypes.c_int + py_mkl_sparse_s_ev.argtypes = [ + ctypes.c_char_p, # char * whichE + array_1d_mkl_int_t, # MKL_INT * pm + sparse_matrix_t, # sparse_matrix_t A, + SparseMatrixDescr, # matrix_desc + ctypes.c_int, # k0 + ctypes.POINTER(ctypes.c_int), # MKL_INT *k, + array_1d_float_t, # float * E + array_1d_float_t, # float * X + array_1d_float_t, # float * res + ] + + py_mkl_sparse_destroy = mkl_rt.mkl_sparse_destroy + py_mkl_sparse_destroy.returntype = None + py_mkl_sparse_destroy.argtypes = [sparse_matrix_t] + + one = ctypes.c_float(1.0) + zero = ctypes.c_float(0.0) + tol = ctypes.c_int(int(tol)) + compute_vectors = ctypes.c_int(1) + xgemmC = ctypes.c_char(b"T") + xgemmN = ctypes.c_char(b"N") + # whichE = ctypes.c_char(b'S') + whichE = ctypes.c_char(whichE) + whichV = ctypes.c_char(b"L") + num_lanczos_vectors = ctypes.c_int(int(ncv)) + maxiter = ctypes.c_int(int(maxiter)) + + k = ctypes.c_int(0) # to be computed by MKL + SPARSE_MATRIX_TYPE_GENERAL = 20 + descr = SparseMatrixDescr(type=SPARSE_MATRIX_TYPE_GENERAL) + mkl_csrA = sparse_matrix_t() + + pm = np.zeros((128,), dtype=np.intc) + py_mkl_sparse_ee_init(pm) + pm[1] = tol.value + pm[2] = 1 + pm[3] = num_lanczos_vectors.value + pm[4] = maxiter.value + pm[6] = compute_vectors.value + pm[ + 7 + ] = 1 # 0 = relative, 1 = Use absolute stopping critertia. Iteration is stopped if norm(Ax - lambda*x) < 10^(-pm[1]) + + k0 = ctypes.c_int(int(k0)) # how many eigenvalues to compute + + tmp = np.empty(spM.data.shape, dtype=np.float32) + tmp[:] = spM.data.astype(np.float32) + + SPARSE_INDEX_BASE_ZERO = 0 + # mkl_sparse_d_create_csr ( &mkl_csrA, SPARSE_INDEX_BASE_ONE, N, M, ia, ia+1, ja, a ); + csr_create_status = py_mkl_sparse_s_create_csr( + ctypes.byref(mkl_csrA), + SPARSE_INDEX_BASE_ZERO, + spM.shape[0], + spM.shape[1], + spM.indptr[:-1], + spM.indptr[1:], + spM.indices, + tmp, # spM.data.astype(np.float32) + ) + + eigenvals = np.zeros((np.max(k0.value),), dtype=np.float32) + resid = np.empty_like(eigenvals) + X = np.empty((k0.value, spM.shape[0]), dtype=np.float32) + X_flat = X.reshape((-1)) + # X_flat = np.ones((k0.value * spM.shape[0]), dtype=np.double) + + info = py_mkl_sparse_s_ev( + ctypes.byref(whichE), # 1 + pm, # 3 + mkl_csrA, # 4 + descr, + k0, + ctypes.byref(k), + eigenvals, + X_flat, + resid, + ) + + X = X_flat.reshape((k0.value, int(X_flat.shape[0] / k0.value))) + X = X.T + X[:, 0] = -X[:, 0] + X[:, 1] = -X[:, 1] + return eigenvals, X + + def spectral_layout(data, graph, dim, random_state, metric="euclidean", metric_kwds={}): """Given a graph compute the spectral embedding of the graph. This is simply the eigenvectors of the laplacian of the graph. Here we use the @@ -332,13 +618,21 @@ def spectral_layout(data, graph, dim, random_state, metric="euclidean", metric_k num_lanczos_vectors = max(2 * k + 1, int(np.sqrt(graph.shape[0]))) try: if L.shape[0] < 2000000: - eigenvalues, eigenvectors = scipy.sparse.linalg.eigsh( + # eigenvalues, eigenvectors = scipy.sparse.linalg.eigsh( + # L, + # k, + # which="SM", + # ncv=num_lanczos_vectors, + # tol=1e-4, + # v0=np.ones(L.shape[0]), + # maxiter=graph.shape[0] * 5, + # ) + eigenvalues, eigenvectors = mkl_eigenvalue( L, k, - which="SM", + whichE=b"S", ncv=num_lanczos_vectors, - tol=1e-4, - v0=np.ones(L.shape[0]), + tol=5, maxiter=graph.shape[0] * 5, ) else: