This repository has been archived by the owner on Aug 2, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
eval_gpt_review.py
162 lines (139 loc) · 5.13 KB
/
eval_gpt_review.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import json
import os
import time
import openai
import tqdm
import ray
import shortuuid
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
MAX_API_RETRY = 5
REQ_TIME_GAP = 10
@ray.remote(num_cpus=4)
def get_eval(sys_prompt, user_prompt: str, max_tokens: int):
logging.basicConfig(level=logging.INFO)
for i in range(MAX_API_RETRY):
try:
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": sys_prompt},
{
"role": "user",
"content": user_prompt,
},
],
temperature=0.2, # TODO: figure out which temperature is best for evaluation
max_tokens=max_tokens,
)
content = response["choices"][0]["message"]["content"]
logger.info(content)
return content
except Exception as e:
logger.error(e)
time.sleep(5)
logger.error(f"Failed after {MAX_API_RETRY} retries.")
return "error"
def parse_score(review):
try:
score_pair = review.split("\n")[0]
score_pair = score_pair.replace(",", " ")
sp = score_pair.split(" ")
if len(sp) == 2:
return [float(sp[0]), float(sp[1])]
else:
raise Exception("Invalid score pair.")
except Exception as e:
logger.error(
f"{e}\nContent: {review}\n" "You must manually fix the score pair."
)
return [-1, -1]
def gen_prompt(reviewer_jsons, prompt_jsons, cat, ques, ans1, ans2):
# Default to general category (index=0)
reviewer_idx = 0
for idx, reviewer in enumerate(reviewer_jsons):
if reviewer["category"] == cat:
reviewer_idx = idx
break
prompt_id = reviewer_jsons[reviewer_idx]["prompt_id"]
prompt_json = prompt_jsons[prompt_id - 1]
assert prompt_json["prompt_id"] == prompt_id
sys_prompt = prompt_json["system_prompt"]
prompt_template = prompt_json["prompt_template"]
defaults = prompt_json["defaults"]
prompt = prompt_template.format(
question=ques, answer_1=ans1, answer_2=ans2, **defaults
)
return sys_prompt, prompt, reviewer_idx + 1
def get_json_list(file_path):
file_path = os.path.expanduser(file_path)
with open(file_path, "r") as f:
json_list = []
for line in f:
json_list.append(json.loads(line))
return json_list
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="ChatGPT-based QA evaluation.")
parser.add_argument("-q", "--question-file")
parser.add_argument("-a", "--answer-file-list", nargs="+", default=[])
parser.add_argument("-p", "--prompt-file")
parser.add_argument("-r", "--reviewer-file")
parser.add_argument("-o", "--output-review-file")
parser.add_argument(
"--max-tokens",
type=int,
default=1024,
help="maximum number of tokens produced in the output",
)
args = parser.parse_args()
ray.init()
question_jsons = get_json_list(args.question_file)
answer1_jsons = get_json_list(args.answer_file_list[0])
answer2_jsons = get_json_list(args.answer_file_list[1])
reviewer_jsons = get_json_list(args.reviewer_file)
prompt_jsons = get_json_list(args.prompt_file)
# check if # of questions, answers are the same
assert len(question_jsons) == len(answer1_jsons) == len(answer2_jsons)
handles = []
review_jsons = []
total_len = len(question_jsons)
question_idx_list = list(range(total_len))
for i in question_idx_list:
assert (
answer1_jsons[i]["question_id"]
== question_jsons[i]["question_id"]
== answer2_jsons[i]["question_id"]
)
ques = question_jsons[i]["text"]
cat = question_jsons[i]["category"]
ans1 = answer1_jsons[i]["text"]
ans2 = answer2_jsons[i]["text"]
sys_prompt, prompt, reviewer_id = gen_prompt(
reviewer_jsons, prompt_jsons, cat, ques, ans1, ans2
)
review_id = shortuuid.uuid()
review_jsons.append(
{
"review_id": review_id,
"question_id": question_jsons[i]["question_id"],
"answer1_id": answer1_jsons[i]["answer_id"],
"answer2_id": answer2_jsons[i]["answer_id"],
"reviewer_id": reviewer_id,
"metadata": {},
}
)
# To avoid the rate limit set by OpenAI
handles.append(get_eval.remote(sys_prompt, prompt, args.max_tokens))
logger.info(
f"Waiting for {REQ_TIME_GAP} seconds before sending the next request."
)
time.sleep(REQ_TIME_GAP)
reviews = ray.get(handles)
with open(f"{args.output_review_file}", "w") as output_review_file:
for idx, review in enumerate(reviews):
scores = parse_score(review)
review_jsons[idx]["text"] = review
review_jsons[idx]["score"] = scores
output_review_file.write(json.dumps(review_jsons[idx]) + "\n")