-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathvector_db.py
74 lines (53 loc) · 2.62 KB
/
vector_db.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import argparse
import json
import torch
import os
import random
import openai
import pandas as pd
from sentence_transformers import SentenceTransformer, util
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
LlamaTokenizer,
AutoModel,
)
def read_dataset(r_path):
print(f"Reading {r_path}...")
dataset = [json.loads(l)["text"] for l in open(r_path, "r")]
print("Done.")
return dataset
def bert_encode(model, data, batch_size=32, device=None):
return model.encode(data, batch_size=batch_size, show_progress_bar=True, device=device)
def top_k_similarity(train_embs, test_embs, top_k):
# Compute cosine-similarities
cosine_scores = util.cos_sim(test_embs, train_embs)
# Find the top-k most similar train_embs for each test_emb
top_k_indices = torch.topk(cosine_scores, k=top_k, dim=1).indices
return top_k_indices
def build_database(model, train_path, test_path, output_path, top_k=1, batch_size=32, device=None):
train_cases = read_dataset(train_path)
test_cases = read_dataset(test_path)
train_embs = bert_encode(model, train_cases, batch_size=batch_size, device=device)
test_embs = bert_encode(model, test_cases, batch_size=batch_size, device=device)
top_k_indices = top_k_similarity(train_embs, test_embs, top_k)
db = []
for i, test_case in enumerate(test_cases):
top_k_cases = [train_cases[index] for index in top_k_indices[i]]
db.append({"test": test_case, "train": top_k_cases})
with open(output_path, "w") as f:
for each in db:
f.write(json.dumps(each) + "\n")
return db
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Build database of top-k similar cases')
parser.add_argument('--train_path', type=str, required=True, help='Path to train cases')
parser.add_argument('--test_path', type=str, required=True, help='Path to test cases')
parser.add_argument('--output_path', type=str, required=True, help='Path to output database')
parser.add_argument('--bert-model', type=str, default='multi-qa-MiniLM-L6-cos-v1', help='Path to sentence transformer model')
parser.add_argument('--top_k', type=int, default=1, help='Number of top-k similar cases to retrieve')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size for encoding')
parser.add_argument('--device', type=str, default=None, help='Device to use for encoding (e.g. "cuda:0")')
args = parser.parse_args()
model = SentenceTransformer(args.bert_model)
build_database(model, args.train_path, args.test_path, args.output_path, args.top_k, args.batch_size, args.device)