From d94e3575d8277812021d7988493e2badf6c109dc Mon Sep 17 00:00:00 2001 From: Scott Todd Date: Mon, 27 Jan 2025 09:08:49 -0800 Subject: [PATCH] Fix logical `or`/`and` usage for MSVC compilation. The `or`/`and` alternate spellings are not supported on all compilers without additinoal flags (https://learn.microsoft.com/en-us/cpp/cpp/logical-or-operator-pipe-pipe?view=msvc-170#operator-keyword-for-). --- lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp | 4 ++-- lib/Dialect/Torch/Transforms/DecomposeComplexOps.cpp | 8 ++++---- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp b/lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp index adf9a46f464a..3db33aee1f1c 100644 --- a/lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp +++ b/lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp @@ -2346,7 +2346,7 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP( ArrayRef inputShape = inputTensorType.getSizes(); unsigned inputRank = inputShape.size(); // only handle 2D, 3D and 5D pooling cases - if (inputRank > 5 or inputRank < 3) { + if (inputRank > 5 || inputRank < 3) { return failure(); } if (!resultType || !resultType.hasSizes()) { @@ -2454,7 +2454,7 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP( "Unimplemented: unranked tensor"); unsigned rank = *maybeRank; // only 1D, 2D and 3D LpPool is supported. - if (rank > 5 or rank < 3) { + if (rank > 5 || rank < 3) { return failure(); } diff --git a/lib/Dialect/Torch/Transforms/DecomposeComplexOps.cpp b/lib/Dialect/Torch/Transforms/DecomposeComplexOps.cpp index 91d6b5eb17fc..b292ce7f4830 100644 --- a/lib/Dialect/Torch/Transforms/DecomposeComplexOps.cpp +++ b/lib/Dialect/Torch/Transforms/DecomposeComplexOps.cpp @@ -9780,7 +9780,7 @@ class DecomposeAtenNllLossForwardOp auto targetSizes = targetType.getSizes(); int64_t selfRank = selfSizes.size(); int64_t targetRank = targetSizes.size(); - if (selfRank <= 0 or selfRank > 2) { + if (selfRank <= 0 || selfRank > 2) { return rewriter.notifyMatchFailure(op, "input tensor should be 1D or 2D"); } if (targetRank > 1) { @@ -9788,8 +9788,8 @@ class DecomposeAtenNllLossForwardOp "target tensor shoule be 0D or 1D!"); } - if (selfRank != 1 or targetRank != 0) { - if (!(selfSizes[0] == kUnknownSize and targetSizes[0] == kUnknownSize) and + if (selfRank != 1 || targetRank != 0) { + if (!(selfSizes[0] == kUnknownSize && targetSizes[0] == kUnknownSize) && selfSizes[0] != targetSizes[0]) { return rewriter.notifyMatchFailure( op, @@ -9907,7 +9907,7 @@ class DecomposeAtenNllLossForwardOp zeroTensor); Value totalWeight; - if (reduction == 0 and selfRank > 1) { + if (reduction == 0 && selfRank > 1) { auto zeroFloat = rewriter.create(loc, rewriter.getF64FloatAttr(0.0)); Value twSize = rewriter.create(