-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathPolygeistToLLVM.cpp
3051 lines (2704 loc) · 124 KB
/
PolygeistToLLVM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===- TrivialUse.cpp - Remove trivial use instruction ---------------- -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to lower gpu kernels in NVVM/gpu dialects into
// a generic parallel for representation
//===----------------------------------------------------------------------===//
#include "PassDetails.h"
#include "mlir/../../lib/Conversion/MemRefToLLVM/MemRefToLLVM.cpp"
#include "mlir/Analysis/DataLayoutAnalysis.h"
#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h"
#include "mlir/Conversion/GPUToROCDL/GPUToROCDLPass.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Conversion/MathToLLVM/MathToLLVM.h"
#include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
#include "mlir/Conversion/OpenMPToLLVM/ConvertOpenMPToLLVM.h"
#include "mlir/Conversion/SCFToControlFlow/SCFToControlFlow.h"
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/Dialect/DLTI/DLTI.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Func/Transforms/Passes.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/Dialect/LLVMIR/ROCDLDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/Dialect/Polygeist/Transforms/Passes.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/Target/LLVMIR/Import.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
#include <fstream>
#include <limits>
#include <map>
#include <numeric>
#include "mlir/Dialect/Polygeist/Utils/RuntimeWrapperUtils.h"
extern llvm::cl::opt<bool> EmitROCM;
#define DEBUG_TYPE "convert-polygeist-to-llvm"
#define DBGS() ::llvm::dbgs() << "[" DEBUG_TYPE ":" << PATTERN << "] "
#if POLYGEIST_ENABLE_ROCM
#include <hip/hip_runtime_api.h>
static void emitHipError(const llvm::Twine &expr, const char *buffer,
hipError_t result, Location loc) {
const char *error;
error = hipGetErrorString(result);
emitError(loc, expr.concat(" failed with error code ")
.concat(llvm::Twine{error})
.concat("[")
.concat(buffer)
.concat("]"));
}
#define RETURN_ON_HIP_ERROR(expr) \
do { \
if (auto status = (expr)) { \
emitHipError(#expr, hipErrorBuffer, status, loc); \
return failure(); \
} \
} while (false)
#endif
#if POLYGEIST_ENABLE_CUDA
#include <cuda.h>
static void emitCudaError(const llvm::Twine &expr, const char *buffer,
CUresult result, Location loc) {
const char *error;
cuGetErrorString(result, &error);
emitError(loc, expr.concat(" failed with error code ")
.concat(llvm::Twine{error})
.concat("[")
.concat(buffer)
.concat("]"));
}
#define RETURN_ON_CUDA_ERROR(expr) \
do { \
if (auto status = (expr)) { \
emitCudaError(#expr, cuErrorBuffer, status, loc); \
return failure(); \
} \
} while (false)
#endif
using namespace mlir;
using namespace polygeist;
extern llvm::cl::opt<PolygeistAlternativesMode> PolygeistAlternativesMode;
mlir::LLVM::LLVMFuncOp GetOrCreateFreeFunction(ModuleOp module);
Type convertMemrefElementTypeForLLVMPointer(
MemRefType type, const LLVMTypeConverter &converter) {
Type converted = converter.convertType(type.getElementType());
if (!converted)
return Type();
if (type.getRank() == 0) {
return converted;
}
// Only the leading dimension can be dynamic.
if (llvm::any_of(type.getShape().drop_front(), ShapedType::isDynamic))
return Type();
// Only identity layout is supported.
// TODO: detect the strided layout that is equivalent to identity
// given the static part of the shape.
if (!type.getLayout().isIdentity())
return Type();
if (type.getRank() > 0) {
for (int64_t size : llvm::reverse(type.getShape().drop_front()))
converted = LLVM::LLVMArrayType::get(converted, size);
}
return converted;
}
struct UndefLowering : public ConvertOpToLLVMPattern<UndefOp> {
using ConvertOpToLLVMPattern<UndefOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(UndefOp uop, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto newTy = typeConverter->convertType(uop.getResult().getType());
rewriter.replaceOpWithNewOp<LLVM::UndefOp>(uop, newTy);
return success();
}
};
struct SubIndexOpLowering : public ConvertOpToLLVMPattern<SubIndexOp> {
using ConvertOpToLLVMPattern<SubIndexOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(SubIndexOp subViewOp, OpAdaptor transformed,
ConversionPatternRewriter &rewriter) const override {
auto loc = subViewOp.getLoc();
if (!subViewOp.getSource().getType().isa<MemRefType>()) {
llvm::errs() << " func: " << subViewOp->getParentOfType<func::FuncOp>()
<< "\n";
llvm::errs() << " sub: " << subViewOp << " - " << subViewOp.getSource()
<< "\n";
}
auto sourceMemRefType = subViewOp.getSource().getType().cast<MemRefType>();
auto viewMemRefType = subViewOp.getType().cast<MemRefType>();
if (transformed.getSource().getType().isa<LLVM::LLVMPointerType>()) {
SmallVector<Value, 2> indices = {transformed.getIndex()};
auto t = transformed.getSource().getType().cast<LLVM::LLVMPointerType>();
auto elTy = convertMemrefElementTypeForLLVMPointer(
subViewOp.getSource().getType(), *getTypeConverter());
if (viewMemRefType.getShape().size() !=
sourceMemRefType.getShape().size()) {
auto zero = rewriter.create<arith::ConstantIntOp>(loc, 0, 64);
indices.push_back(zero);
}
assert(t.isOpaque());
if (!elTy.isa<LLVM::LLVMArrayType, LLVM::LLVMStructType>())
assert(indices.size() == 1);
auto ptr = rewriter.create<LLVM::GEPOp>(loc, t, elTy,
transformed.getSource(), indices);
std::vector ptrs = {ptr.getResult()};
rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(
subViewOp, getTypeConverter()->convertType(subViewOp.getType()),
ptrs);
return success();
}
MemRefDescriptor targetMemRef(transformed.getSource());
Value prev = targetMemRef.alignedPtr(rewriter, loc);
Value idxs[] = {transformed.getIndex()};
SmallVector<Value, 4> sizes;
SmallVector<Value, 4> strides;
if (sourceMemRefType.getShape().size() !=
viewMemRefType.getShape().size()) {
if (sourceMemRefType.getShape().size() !=
viewMemRefType.getShape().size() + 1) {
return failure();
}
size_t sz = 1;
for (size_t i = 1; i < sourceMemRefType.getShape().size(); i++) {
if (sourceMemRefType.getShape()[i] == ShapedType::kDynamic)
return failure();
sz *= sourceMemRefType.getShape()[i];
}
Value cop = rewriter.create<LLVM::ConstantOp>(
loc, idxs[0].getType(),
rewriter.getIntegerAttr(idxs[0].getType(), sz));
idxs[0] = rewriter.create<LLVM::MulOp>(loc, idxs[0], cop);
for (size_t i = 1; i < sourceMemRefType.getShape().size(); i++) {
sizes.push_back(targetMemRef.size(rewriter, loc, i));
strides.push_back(targetMemRef.stride(rewriter, loc, i));
}
} else {
for (size_t i = 0; i < sourceMemRefType.getShape().size(); i++) {
sizes.push_back(targetMemRef.size(rewriter, loc, i));
strides.push_back(targetMemRef.stride(rewriter, loc, i));
}
}
// nexRef.setOffset(targetMemRef.offset());
// nexRef.setSize(targetMemRef.size());
// nexRef.setStride(targetMemRef.stride());
if (false) {
Value baseOffset = targetMemRef.offset(rewriter, loc);
Value stride = targetMemRef.stride(rewriter, loc, 0);
Value offset = transformed.getIndex();
Value mul = rewriter.create<LLVM::MulOp>(loc, offset, stride);
baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul);
targetMemRef.setOffset(rewriter, loc, baseOffset);
}
MemRefDescriptor nexRef = createMemRefDescriptor(
loc, subViewOp.getType(), targetMemRef.allocatedPtr(rewriter, loc),
rewriter.create<LLVM::GEPOp>(loc, prev.getType(), prev, idxs), sizes,
strides, rewriter);
rewriter.replaceOp(subViewOp, {nexRef});
return success();
}
};
struct Memref2PointerOpLowering
: public ConvertOpToLLVMPattern<Memref2PointerOp> {
using ConvertOpToLLVMPattern<Memref2PointerOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(Memref2PointerOp op, OpAdaptor transformed,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto LPT = op.getType().cast<LLVM::LLVMPointerType>();
auto space0 = op.getSource().getType().getMemorySpaceAsInt();
if (transformed.getSource().getType().isa<LLVM::LLVMPointerType>()) {
mlir::Value ptr = rewriter.create<LLVM::BitcastOp>(
loc, LLVM::LLVMPointerType::get(op.getContext(), space0),
transformed.getSource());
if (space0 != LPT.getAddressSpace())
ptr = rewriter.create<LLVM::AddrSpaceCastOp>(loc, LPT, ptr);
rewriter.replaceOp(op, {ptr});
return success();
}
// MemRefDescriptor sourceMemRef(operands.front());
MemRefDescriptor targetMemRef(
transformed.getSource()); // MemRefDescriptor::undef(rewriter, loc,
// targetDescTy);
// Offset.
Value baseOffset = targetMemRef.offset(rewriter, loc);
Value ptr = targetMemRef.alignedPtr(rewriter, loc);
Value idxs[] = {baseOffset};
ptr = rewriter.create<LLVM::GEPOp>(loc, ptr.getType(), ptr, idxs);
ptr = rewriter.create<LLVM::BitcastOp>(
loc, LLVM::LLVMPointerType::get(op.getContext(), space0), ptr);
if (space0 != LPT.getAddressSpace())
ptr = rewriter.create<LLVM::AddrSpaceCastOp>(loc, LPT, ptr);
rewriter.replaceOp(op, {ptr});
return success();
}
};
struct Pointer2MemrefOpLowering
: public ConvertOpToLLVMPattern<Pointer2MemrefOp> {
using ConvertOpToLLVMPattern<Pointer2MemrefOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(Pointer2MemrefOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
// MemRefDescriptor sourceMemRef(operands.front());
auto convertedType = getTypeConverter()->convertType(op.getType());
assert(convertedType && "unexpected failure in memref type conversion");
if (auto PT = dyn_cast<LLVM::LLVMPointerType>(convertedType)) {
rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(op, PT, adaptor.getSource());
return success();
}
auto descr = MemRefDescriptor::undef(rewriter, loc, convertedType);
auto ptr = rewriter.create<LLVM::BitcastOp>(
op.getLoc(), descr.getElementPtrType(), adaptor.getSource());
// Extract all strides and offsets and verify they are static.
int64_t offset;
SmallVector<int64_t, 4> strides;
auto result = getStridesAndOffset(op.getType(), strides, offset);
(void)result;
assert(succeeded(result) && "unexpected failure in stride computation");
assert(offset != ShapedType::kDynamic && "expected static offset");
bool first = true;
assert(!llvm::any_of(strides, [&](int64_t stride) {
if (first) {
first = false;
return false;
}
return stride == ShapedType::kDynamic;
}) && "expected static strides except first element");
descr.setAllocatedPtr(rewriter, loc, ptr);
descr.setAlignedPtr(rewriter, loc, ptr);
descr.setConstantOffset(rewriter, loc, offset);
// Fill in sizes and strides
for (unsigned i = 0, e = op.getType().getRank(); i != e; ++i) {
descr.setConstantSize(rewriter, loc, i, op.getType().getDimSize(i));
descr.setConstantStride(rewriter, loc, i, strides[i]);
}
rewriter.replaceOp(op, {descr});
return success();
}
};
struct StreamToTokenOpLowering
: public ConvertOpToLLVMPattern<StreamToTokenOp> {
using ConvertOpToLLVMPattern<StreamToTokenOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(StreamToTokenOp op, OpAdaptor transformed,
ConversionPatternRewriter &rewriter) const override {
Value v[] = {transformed.getSource()};
rewriter.replaceOp(op, v);
return success();
}
};
struct TypeSizeOpLowering : public ConvertOpToLLVMPattern<TypeSizeOp> {
using ConvertOpToLLVMPattern<TypeSizeOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TypeSizeOp op, OpAdaptor transformed,
ConversionPatternRewriter &rewriter) const override {
Type NT = op.getSourceAttr().getValue();
if (auto T = getTypeConverter()->convertType(NT)) {
NT = T;
}
assert(NT);
auto type = getTypeConverter()->convertType(op.getType());
if (NT.isa<IntegerType, FloatType>() || LLVM::isCompatibleType(NT)) {
DataLayout DLI(op->getParentOfType<ModuleOp>());
rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(
op, type, rewriter.getIntegerAttr(type, DLI.getTypeSize(NT)));
return success();
}
if (NT != op.getSourceAttr().getValue() || type != op.getType()) {
rewriter.replaceOpWithNewOp<TypeSizeOp>(op, type, NT);
return success();
}
return failure();
}
};
struct TypeAlignOpLowering : public ConvertOpToLLVMPattern<TypeAlignOp> {
using ConvertOpToLLVMPattern<TypeAlignOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TypeAlignOp op, OpAdaptor transformed,
ConversionPatternRewriter &rewriter) const override {
Type NT = op.getSourceAttr().getValue();
if (auto T = getTypeConverter()->convertType(NT)) {
NT = T;
}
assert(NT);
auto type = getTypeConverter()->convertType(op.getType());
if (NT.isa<IntegerType, FloatType>() || LLVM::isCompatibleType(NT)) {
DataLayout DLI(op->getParentOfType<ModuleOp>());
rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(
op, type, rewriter.getIntegerAttr(type, DLI.getTypeABIAlignment(NT)));
return success();
}
if (NT != op.getSourceAttr().getValue() || type != op.getType()) {
rewriter.replaceOpWithNewOp<TypeAlignOp>(op, type, NT);
return success();
}
return failure();
}
};
void populatePolygeistToLLVMConversionPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns) {
// clang-format off
patterns.add<TypeSizeOpLowering>(converter);
patterns.add<TypeAlignOpLowering>(converter);
patterns.add<UndefLowering>(converter);
patterns.add<SubIndexOpLowering>(converter);
patterns.add<Memref2PointerOpLowering>(converter);
patterns.add<Pointer2MemrefOpLowering>(converter);
// clang-format on
}
namespace {
// Change the gpu module globals' addr space accordingly (4 for constant mem, 1
// for global, ?? for shared?) and other attrs TODO LLVM version
//
// set "dso_local addrspace(1|4) externally_initialized zeroinitialized"
struct GPUGlobalConversion : public OpRewritePattern<memref::GlobalOp> {
using OpRewritePattern<memref::GlobalOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::GlobalOp globalOp,
PatternRewriter &rewriter) const override {
if (!isa<gpu::GPUModuleOp>(globalOp->getParentOp())) {
return failure();
}
auto mt = globalOp.getType();
auto memSpace = mt.getMemorySpaceAsInt();
if (memSpace != 0) {
return failure();
}
int newMemspace = 0;
if (globalOp->getAttr("polygeist.cuda_device")) {
newMemspace = 1;
} else if (globalOp->getAttr("polygeist.cuda_constant")) {
newMemspace = 4;
} else {
// TODO what else is there? managed?
globalOp.emitError("Unsupported global type in gpu module");
assert(0);
}
auto type =
MemRefType::get(mt.getShape(), mt.getElementType(), {}, newMemspace);
// TODO add zeroinitializer
mlir::Attribute initial_value = rewriter.getUnitAttr();
if (globalOp.getInitialValue())
initial_value = globalOp.getInitialValue().value();
rewriter.setInsertionPoint(globalOp);
auto newGlobalOp = rewriter.create<memref::GlobalOp>(
globalOp->getLoc(), rewriter.getStringAttr(globalOp.getSymName()),
/* sym_visibility */ mlir::StringAttr(), mlir::TypeAttr::get(type),
initial_value, mlir::UnitAttr(), /* alignment */ nullptr);
if (globalOp->getAttr("polygeist.cuda_device")) {
newGlobalOp->setAttr("polygeist.cuda_device", rewriter.getUnitAttr());
} else if (globalOp->getAttr("polygeist.cuda_constant")) {
newGlobalOp->setAttr("polygeist.cuda_constant", rewriter.getUnitAttr());
}
rewriter.eraseOp(globalOp);
return success();
}
};
// Change the gpu module get globals' addr space as well
struct GPUGetGlobalConversion : public OpRewritePattern<memref::GetGlobalOp> {
using OpRewritePattern<memref::GetGlobalOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::GetGlobalOp ggo,
PatternRewriter &rewriter) const override {
auto gpuModule = ggo->getParentOfType<gpu::GPUModuleOp>();
if (!gpuModule) {
return failure();
}
auto loc = ggo->getLoc();
auto mt = ggo.getType();
if (mt.getMemorySpaceAsInt() != 0) {
return failure();
}
auto globalOp =
cast<memref::GlobalOp>(gpuModule.lookupSymbol(ggo.getNameAttr()));
int newMemspace = 0;
int globalMemspace = globalOp.getType().getMemorySpaceAsInt();
if (globalOp->getAttr("polygeist.cuda_device") || globalMemspace == 1) {
newMemspace = 1;
} else if (globalOp->getAttr("polygeist.cuda_constant") ||
globalMemspace == 4) {
newMemspace = 4;
} else {
// TODO what else is there? managed?
ggo.emitError("Unsupported global type in gpu module");
ggo->dump();
globalOp->dump();
assert(0);
}
auto newMT =
MemRefType::get(mt.getShape(), mt.getElementType(), {}, newMemspace);
auto newGetGlobalOp =
rewriter.create<memref::GetGlobalOp>(loc, newMT, ggo.getName());
auto castOp =
rewriter.create<memref::CastOp>(loc, mt, newGetGlobalOp.getResult());
rewriter.replaceOp(ggo, castOp->getResults());
return success();
}
};
struct LLVMOpLowering : public ConversionPattern {
explicit LLVMOpLowering(LLVMTypeConverter &converter)
: ConversionPattern(converter, Pattern::MatchAnyOpTypeTag(), 1,
&converter.getContext()) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
const TypeConverter *converter = getTypeConverter();
SmallVector<Type> convertedResultTypes;
if (failed(converter->convertTypes(op->getResultTypes(),
convertedResultTypes))) {
return failure();
}
SmallVector<Type> convertedOperandTypes;
if (failed(converter->convertTypes(op->getOperandTypes(),
convertedOperandTypes))) {
return failure();
}
bool typeAttrsConverted = true;
for (auto &attr : op->getAttrs())
if (auto tyAttr = dyn_cast<TypeAttr>(attr.getValue()))
if (converter->convertType(tyAttr.getValue()) != tyAttr.getValue())
typeAttrsConverted = false;
if (convertedResultTypes == op->getResultTypes() &&
convertedOperandTypes == op->getOperandTypes() && typeAttrsConverted) {
return failure();
}
if (isa<UnrealizedConversionCastOp>(op))
return failure();
SmallVector<NamedAttribute> convertedAttrs;
for (auto &attr : op->getAttrs()) {
NamedAttribute convertedAttr = attr;
if (auto tyAttr = dyn_cast<TypeAttr>(attr.getValue())) {
Type convertedTy = converter->convertType(tyAttr.getValue());
if (!convertedTy)
return failure();
convertedAttr.setValue(TypeAttr::get(convertedTy));
}
convertedAttrs.push_back(convertedAttr);
}
OperationState state(op->getLoc(), op->getName());
state.addOperands(operands);
state.addTypes(convertedResultTypes);
state.addAttributes(convertedAttrs);
state.addSuccessors(op->getSuccessors());
for (unsigned i = 0, e = op->getNumRegions(); i < e; ++i)
state.addRegion();
Operation *rewritten = rewriter.create(state);
for (unsigned i = 0, e = op->getNumRegions(); i < e; ++i)
rewriter.inlineRegionBefore(op->getRegion(i), rewritten->getRegion(i),
rewritten->getRegion(i).begin());
rewriter.replaceOp(op, rewritten->getResults());
return success();
}
};
struct URLLVMOpLowering
: public ConvertOpToLLVMPattern<UnrealizedConversionCastOp> {
using ConvertOpToLLVMPattern<
UnrealizedConversionCastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(UnrealizedConversionCastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.use_empty()) {
rewriter.eraseOp(op);
return success();
}
if (op->getResult(0).getType() != op->getOperand(0).getType())
return failure();
rewriter.replaceOp(op, op->getOperands());
return success();
}
};
// TODO lock this wrt module
static LLVM::LLVMFuncOp addMocCUDAFunction(ModuleOp module, Type streamTy) {
const char fname[] = "fake_cuda_dispatch";
MLIRContext *ctx = module.getContext();
auto loc = module.getLoc();
auto moduleBuilder = ImplicitLocOpBuilder::atBlockEnd(loc, module.getBody());
for (auto fn : module.getBody()->getOps<LLVM::LLVMFuncOp>()) {
if (fn.getName() == fname)
return fn;
}
auto voidTy = LLVM::LLVMVoidType::get(ctx);
auto ptrTy = LLVM::LLVMPointerType::get(ctx);
auto resumeOp = moduleBuilder.create<LLVM::LLVMFuncOp>(
fname, LLVM::LLVMFunctionType::get(voidTy, {ptrTy, ptrTy, streamTy}));
resumeOp.setPrivate();
return resumeOp;
}
/// In some cases such as scf.for, the blocks generated when it gets lowered
/// depend on the parent region having already been lowered and having a
/// converter assigned to it - this pattern assures that execute ops have a
/// converter becaus they will actually be lowered only after everything else
/// has been converted to llvm
class ConvertExecuteOpTypes : public ConvertOpToLLVMPattern<async::ExecuteOp> {
public:
using ConvertOpToLLVMPattern<async::ExecuteOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(async::ExecuteOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
async::ExecuteOp newOp = cast<async::ExecuteOp>(
rewriter.cloneWithoutRegions(*op.getOperation()));
rewriter.inlineRegionBefore(op.getRegion(), newOp.getRegion(),
newOp.getRegion().end());
// Set operands and update block argument and result types.
newOp->setOperands(adaptor.getOperands());
if (failed(rewriter.convertRegionTypes(&newOp.getRegion(), *typeConverter)))
return failure();
for (auto result : newOp.getResults())
result.setType(typeConverter->convertType(result.getType()));
newOp->setAttr("polygeist.handled", rewriter.getUnitAttr());
rewriter.replaceOp(op, newOp.getResults());
return success();
}
};
struct AsyncOpLowering : public ConvertOpToLLVMPattern<async::ExecuteOp> {
using ConvertOpToLLVMPattern<async::ExecuteOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(async::ExecuteOp execute, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ModuleOp module = execute->getParentOfType<ModuleOp>();
MLIRContext *ctx = module.getContext();
Location loc = execute.getLoc();
auto voidTy = LLVM::LLVMVoidType::get(ctx);
Type voidPtr = LLVM::LLVMPointerType::get(ctx);
// Make sure that all constants will be inside the outlined async function
// to reduce the number of function arguments.
Region &execReg = execute.getBodyRegion();
// Collect all outlined function inputs.
SetVector<mlir::Value> functionInputs;
getUsedValuesDefinedAbove(execute.getBodyRegion(), execReg, functionInputs);
SmallVector<Value> toErase;
for (auto a : functionInputs) {
Operation *op = a.getDefiningOp();
if (op && op->hasTrait<OpTrait::ConstantLike>())
toErase.push_back(a);
}
for (auto a : toErase) {
functionInputs.remove(a);
}
// Collect types for the outlined function inputs and outputs.
const TypeConverter *converter = getTypeConverter();
auto typesRange = llvm::map_range(functionInputs, [&](Value value) {
return converter->convertType(value.getType());
});
SmallVector<Type, 4> inputTypes(typesRange.begin(), typesRange.end());
Type ftypes[] = {voidPtr};
auto funcType = LLVM::LLVMFunctionType::get(voidTy, ftypes);
// TODO: Derive outlined function name from the parent FuncOp (support
// multiple nested async.execute operations).
LLVM::LLVMFuncOp func;
{
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToEnd(module.getBody());
static int off = 0;
off++;
func = rewriter.create<LLVM::LLVMFuncOp>(
execute.getLoc(),
"kernelbody." + std::to_string((long long int)&execute) + "." +
std::to_string(off),
funcType);
}
rewriter.setInsertionPointToStart(func.addEntryBlock());
IRMapping valueMapping;
for (Value capture : toErase) {
Operation *op = capture.getDefiningOp();
for (auto r :
llvm::zip(op->getResults(),
rewriter.clone(*op, valueMapping)->getResults())) {
valueMapping.map(rewriter.getRemappedValue(std::get<0>(r)),
std::get<1>(r));
}
}
// Prepare for coroutine conversion by creating the body of the function.
{
// Map from function inputs defined above the execute op to the function
// arguments.
auto arg = func.getArgument(0);
if (functionInputs.size() == 0) {
} else if (functionInputs.size() == 1 &&
converter->convertType(functionInputs[0].getType())
.isa<LLVM::LLVMPointerType>()) {
valueMapping.map(
functionInputs[0],
rewriter.create<LLVM::BitcastOp>(
execute.getLoc(),
converter->convertType(functionInputs[0].getType()), arg));
} else if (functionInputs.size() == 1 &&
converter->convertType(functionInputs[0].getType())
.isa<IntegerType>()) {
valueMapping.map(
functionInputs[0],
rewriter.create<LLVM::PtrToIntOp>(
execute.getLoc(),
converter->convertType(functionInputs[0].getType()), arg));
} else {
SmallVector<Type> types;
for (auto v : functionInputs)
types.push_back(converter->convertType(v.getType()));
auto ST = LLVM::LLVMStructType::getLiteral(ctx, types);
auto alloc = rewriter.create<LLVM::BitcastOp>(
execute.getLoc(), LLVM::LLVMPointerType::get(ctx), arg);
for (auto idx : llvm::enumerate(functionInputs)) {
mlir::Value idxs[] = {
rewriter.create<arith::ConstantIntOp>(loc, 0, 32),
rewriter.create<arith::ConstantIntOp>(loc, idx.index(), 32),
};
Value next =
rewriter.create<LLVM::GEPOp>(loc, LLVM::LLVMPointerType::get(ctx),
idx.value().getType(), alloc, idxs);
valueMapping.map(idx.value(), rewriter.create<LLVM::LoadOp>(
loc, idx.value().getType(), next));
}
auto freef =
getTypeConverter()->getOptions().useGenericFunctions
? LLVM::lookupOrCreateGenericFreeFn(module,
/*opaquePointers=*/true)
: LLVM::lookupOrCreateFreeFn(module, /*opaquePointers=*/true);
Value args[] = {arg};
rewriter.create<LLVM::CallOp>(loc, freef, args);
}
// Clone all operations from the execute operation body into the outlined
// function body.
rewriter.cloneRegionBefore(execute.getBodyRegion(), func.getRegion(),
func.getRegion().end(), valueMapping);
rewriter.create<LLVM::BrOp>(execute.getLoc(), ValueRange(),
&*std::next(func.getRegion().begin()));
for (Block &b : func.getRegion()) {
auto term = b.getTerminator();
if (isa<async::YieldOp>(term)) {
rewriter.setInsertionPointToEnd(&b);
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(term, ValueRange());
}
}
}
// Replace the original `async.execute` with a call to outlined function.
{
rewriter.setInsertionPoint(execute);
SmallVector<Value> crossing;
for (auto tup : llvm::zip(functionInputs, inputTypes)) {
Value val = std::get<0>(tup);
crossing.push_back(val);
}
SmallVector<Value> vals;
if (crossing.size() == 0) {
vals.push_back(
rewriter.create<LLVM::ZeroOp>(execute.getLoc(), voidPtr));
} else if (crossing.size() == 1 &&
converter->convertType(crossing[0].getType())
.isa<LLVM::LLVMPointerType>()) {
vals.push_back(rewriter.create<LLVM::BitcastOp>(execute.getLoc(),
voidPtr, crossing[0]));
} else if (crossing.size() == 1 &&
converter->convertType(crossing[0].getType())
.isa<IntegerType>()) {
vals.push_back(rewriter.create<LLVM::IntToPtrOp>(execute.getLoc(),
voidPtr, crossing[0]));
} else {
SmallVector<Type> types;
for (auto v : crossing)
types.push_back(v.getType());
auto ST = LLVM::LLVMStructType::getLiteral(ctx, types);
Value arg = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getI64Type(),
rewriter.create<polygeist::TypeSizeOp>(loc, rewriter.getIndexType(),
ST));
auto mallocFunc = LLVM::lookupOrCreateMallocFn(module, getIndexType(),
/*opaquePointers=*/true);
mlir::Value alloc =
rewriter.create<LLVM::CallOp>(loc, mallocFunc, arg).getResult();
rewriter.setInsertionPoint(execute);
for (auto idx : llvm::enumerate(crossing)) {
mlir::Value idxs[] = {
rewriter.create<arith::ConstantIntOp>(loc, 0, 32),
rewriter.create<arith::ConstantIntOp>(loc, idx.index(), 32),
};
Value next = rewriter.create<LLVM::GEPOp>(
loc, LLVM::LLVMPointerType::get(rewriter.getContext()),
idx.value().getType(), alloc, idxs);
rewriter.create<LLVM::StoreOp>(loc, idx.value(), next);
}
vals.push_back(
rewriter.create<LLVM::BitcastOp>(execute.getLoc(), voidPtr, alloc));
}
vals.push_back(rewriter.create<LLVM::BitcastOp>(
execute.getLoc(), voidPtr,
rewriter.create<LLVM::AddressOfOp>(execute.getLoc(), func)));
for (auto dep : execute.getDependencies()) {
auto src = dep.getDefiningOp<polygeist::StreamToTokenOp>().getSource();
if (auto MT = dyn_cast<MemRefType>(src.getType()))
src = rewriter.create<polygeist::Memref2PointerOp>(
dep.getDefiningOp()->getLoc(),
LLVM::LLVMPointerType::get(rewriter.getContext(),
MT.getMemorySpaceAsInt()),
src);
vals.push_back(src);
}
assert(vals.size() == 3);
auto f = addMocCUDAFunction(execute->getParentOfType<ModuleOp>(),
vals.back().getType());
rewriter.create<LLVM::CallOp>(execute.getLoc(), f, vals);
rewriter.eraseOp(execute);
}
return success();
}
};
struct GlobalOpTypeConversion : public OpConversionPattern<LLVM::GlobalOp> {
explicit GlobalOpTypeConversion(LLVMTypeConverter &converter)
: OpConversionPattern<LLVM::GlobalOp>(converter,
&converter.getContext()) {}
LogicalResult
matchAndRewrite(LLVM::GlobalOp op, LLVM::GlobalOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const TypeConverter *converter = getTypeConverter();
Type globalType = adaptor.getGlobalType();
Type convertedType = converter->convertType(globalType);
if (!convertedType)
return failure();
if (convertedType == globalType)
return failure();
rewriter.updateRootInPlace(
op, [&]() { op.setGlobalTypeAttr(TypeAttr::get(convertedType)); });
return success();
}
};
struct GetFuncOpConversion : public OpConversionPattern<polygeist::GetFuncOp> {
explicit GetFuncOpConversion(LLVMTypeConverter &converter)
: OpConversionPattern<polygeist::GetFuncOp>(converter,
&converter.getContext()) {}
LogicalResult
matchAndRewrite(polygeist::GetFuncOp op,
polygeist::GetFuncOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const TypeConverter *converter = getTypeConverter();
Type retType = op.getType();
Type convertedType = converter->convertType(retType);
if (!convertedType)
return failure();
rewriter.replaceOpWithNewOp<LLVM::AddressOfOp>(op, convertedType,
op.getName());
return success();
}
};
struct ReturnOpTypeConversion : public ConvertOpToLLVMPattern<LLVM::ReturnOp> {
using ConvertOpToLLVMPattern<LLVM::ReturnOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(LLVM::ReturnOp op, LLVM::ReturnOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto replacement =
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, adaptor.getArg());
replacement->setAttrs(adaptor.getAttributes());
return success();
}
};
} // namespace
//===-----------------------------------------------------------------------===/
// Patterns for C-compatible MemRef lowering.
//===-----------------------------------------------------------------------===/
// Additional patterns for converting MLIR ops from MemRef and Func dialects
// to the LLVM dialect using the C-compatible type conversion for memrefs.
// Specifically, a memref such as memref<A x B x C x type> is converted into
// a pointer to an array of arrays such as !llvm.ptr<array<B x array<C x type>>
// with additional conversion of the element type. This approach is only
// applicable to memrefs with static shapes in all dimensions but the outermost,
// which coincides with the nested array constructs allowed in C (except VLA).
// This also matches the type produced by Clang for such array constructs,
// removing the need for ABI compatibility layers.
//===-----------------------------------------------------------------------===/
namespace {
/// Pattern for allocation-like operations.
template <typename OpTy>
struct AllocLikeOpLowering : public ConvertOpToLLVMPattern<OpTy> {
public:
using ConvertOpToLLVMPattern<OpTy>::ConvertOpToLLVMPattern;
protected:
/// Returns the value containing the outermost dimension of the memref to be
/// allocated, or 1 if the memref has rank zero.
Value getOuterSize(OpTy original,
typename ConvertOpToLLVMPattern<OpTy>::OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (!adaptor.getDynamicSizes().empty())
return adaptor.getDynamicSizes().front();
Type indexType = rewriter.getIndexType();
return this->createIndexAttrConstant(
rewriter, original->getLoc(), indexType,
original.getType().getRank() == 0 ? 1
: original.getType().getDimSize(0));
}
};
/// Pattern for lowering automatic stack allocations.
struct CAllocaOpLowering : public AllocLikeOpLowering<memref::AllocaOp> {
public:
using AllocLikeOpLowering<memref::AllocaOp>::AllocLikeOpLowering;
LogicalResult
matchAndRewrite(memref::AllocaOp allocaOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = allocaOp.getLoc();
MemRefType originalType = allocaOp.getType();
auto convertedType = dyn_cast_or_null<LLVM::LLVMPointerType>(
getTypeConverter()->convertType(originalType));
auto elTy = convertMemrefElementTypeForLLVMPointer(
originalType, *this->getTypeConverter());
if (!convertedType || !elTy)
return rewriter.notifyMatchFailure(loc, "unsupported memref type");
assert(adaptor.getDynamicSizes().size() <= 1 &&
"expected at most one dynamic size");
Value outerSize = getOuterSize(allocaOp, adaptor, rewriter);
rewriter.replaceOpWithNewOp<LLVM::AllocaOp>(